
Volume Three—Feedback Loops 10 December 2002 i

Chapter Five: Contents –
 (Mode Choice – 10 December 2002 – LA-UR 01-5713 – Portland Study Reports)

1. INTRODUCTION..1

2. CASE STUDY MODE CHOICE...3
2.1 CASE STUDY MODEL & DEFINITIONS.. 3
2.2 RESULTS OF CALIBRATION AND APPLICATION.. 15

3. SOME TOPICS OF INTEREST..27
3.1 COST FUNCTIONS THAT CAN NOT BE CALIBRATED ... 27
3.2 NONUNIQUENESS OF THE COST FUNCTION.. 27
3.3 SAMPLE SIZES, BIASES AND VARIABILITY .. 28
3.4 BOARDING TIMES FOR TRANSIT .. 30

4. SUMMARY ..32

5. APPENDIX A: GENERAL SCRIPTS FOR MODE CALIBRATION...................................33
5.1 CALIBRATION METHODS.. 33
5.2 APPLICATION TO FORECAST YEAR .. 43

6. APPENDIX B: SCRIPTS AND CONFIGURATION FILES..53
6.1 CONFIGURATION FILES .. 53
6.2 SCRIPTS .. 79

Chapter Five—Mode Calibration … Portland Study

Volume Three—Feedback Loops 10 December 2002 1

Chapter Five—Mode Calibration and Assignment
in the Portland Study

1. INTRODUCTION
Mode calibration and assignment in the Portland Study is a demonstration of a general
methodology. It is limited to only those travelers on work tours that have home and work
locations near transit stops. The procedures shown in this document demonstrates an
implementation of the general mode methodology (GMD) that is given in TRANSIMS
Ver. 3, Volume Seven (Methods in TRANSIMS), Chapter One (Mode Choice). It is
advised that the general documentation be read before attempting to understand the
results outlined in this document.

A non-logit mode choice methodology is used in the Study. It is a simple methodology
based on fitted semi-parametric logit like functions of costs that are calibrated to the
survey mode splits. Mathematically, it follows the results shown in Section 2.1 (Mode
Choice Theory) of the GMD, and in that sense is a valid methodology. It should be noted
that if a logit is thought of as a “behavioral” model, then the models here are also
“behavioral” models as they too are composed of statistical fits to human mode choice
“behavior” data.

There are numerous research reasons for the development of this methodology for the
Study rather than using a logit approach. These reasons include:

1) To study a limited fidelity mode choice methodology. The obvious methodology is to
fit a logit. A second methodology is a series of logit-like fits to subpopulations of
travelers. These types of models require less modeling assumptions and, as such, are
better suited for forecasts. One of the purposes in the Study was to ascertain whether
a collection of these simplified models can be calibrated.

2) To understand TRANSIMS. Rather than spend time making statistical fits to survey
data, it was deemed more important to give guidance on the behavior of the Route
Planner when making mode choices. Also, the general implications of assigning
modes to individuals for an entire day and simulating their movements on a second-
by-second basis needed to be understood. The general theory of mode calibration
given in TRANSIMS Ver. 3, Volume Seven (Methods in TRANSIMS), Chapter One
(Mode Choice), Section 2.1 (Mode Choice Theory) is a result of these studies.

3) To demonstrate that many methodologies can be implemented and used in the
TRANSIMS Framework. Other than the Route Planner behavior, all of the results of
Section 2.1 of the GMD are dependent on user-defined mode assignment functions.
TRANSIMS, being a modeling system rather than a model, is shown to support many
methodologies for mode choice.

Chapter Five—Mode Calibration … Portland Study

Volume Three—Feedback Loops 10 December 2002 2

4) To understand mode assignment in tours. Consistency of mode choice in tours and
the calibration of modes by tours needed to be understood.

5) To exercise the TRANSIMS Collator. The TRANSIMS technology that brings
together the activity list, the routes, and the microsimulation results is the Collator.
The mode choice experiment allowed testing and revising of the Collator so that
information needed to make mode choice is available to the user regardless of the
methodology used.

The mathematical notation and the procedures for mode calibration used in this document
follow that of the GMD. The methodology in that document calls for the determination
and calibration of the functional form for the choice functions that represent the
probabilities , , , and . P M DU

(1)(|1) P M A s DU
w

w(| ,2 =) P M A s DU
b

b(| ,2 =))

)

)
)

)

w))t
t

))t
t

P M A s DU
l

l(| ,2 =

Here is a first stage choice procedure that chooses between the modes
unchanged by the “rational choice” of the Route Planner, bike (BI), school bus (S), inter-
household shared rides (M), and those that may change denote by the combined mode X.
The mode X represents the vehicular and walk modes which, because of the “rational
choice” behavior of the Route Planner, needs separate calibration. The mode X could also
include park and ride, but it is probably better to calibrate it as a separate mode in stage 1.
The stage 2 choice procedures represent the probabilities choosing auto or transit
depending on the behavior of the Route Planner when it routes the trip by generalized
transit (T). In the GMD these probabilities are , , and

, and represent probabilities for three mutually exclusive mode splits—
walk legs only, at least one bus leg, and only light rail legs—of the trips/tours for these
routes. As pointed out in the GMD, any split of these trips/tours is allowed as long as the
splits are mutually exclusive.

P M DU
(1)(|1

A s Dl(|2 =
P M A s DU

w
w(| ,2 =) P M A s DU

b
b(| ,2 =

P MU
l ,

In this demonstration, no attempt is made to calibrate the first stage of the mode choice,
. Two mutually exclusive partitions of the trips/tours are used for the second

stage calibration. The first, s , is a collection of those trips/tours that contain only walk
legs when routed as general transit (T). The set s contains those trips/tours with at least
one transit leg. Simple functional forms are used for the choice functions representing the
probabilities and . It is the calibration of the
functions representing the probabilities and that is
of interest here, as these functions are influenced by the “rational choice” behavior of the
Route Planner.

P M DU
(1)(|1

w

s D|

t

A
(=

P M AU w(,2 = 2(| ,UP M s D=
P M A sU

w
w|2 D, 2(| ,UP M A s D=

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 3

2. CASE STUDY MODE CHOICE
A mode choice methodology is developed in the GMD. In the Study, a limited fidelity
model with few assumptions is used to calibrate a mode choice for a subset of the
population. The following subsections detail the user-defined mode assignment functions
that are used in the context of the general methodology. Enough detail is given so that the
reader may reproduce the results and fine-tune the methodology to make it viable for the
general transportation community as well as for research purposes.

2.1 Case Study Model & Definitions

In the Study, no calibrated choice functions are generated to represent the probability
 functions in choosing among modes BI, S, M, or X. For this demonstration,

it is assumed that the mode choice assigned by the TRANSIMS Activity Generator for
the bike, school bus, and shared-ride trips is reasonable. In practice, would
either be calibrated or, at a minimum, the mode choice for BI, S, M, or X assigned by the
Activity Generator would be checked. In the Study, when a trip using bike or school bus
mode is included in an otherwise transit, walk, or auto tour, only the transit, walk, and
auto trips in the tour are changed—the bike and school bus trips are unchanged. Given
the complexity of intra-household shared rides, tours involving them are not considered
in the mode choice procedures in the Study.

(DMPU |1))1(

))1((DMPU |1

All mode assignments in the Study are estimated for home-to-home tours, not from trips.
Despite the fact that trips are a very convenient atomic unit for measurement and for
mathematics, in reality no traveler considers a trip independent of the rest of the tour.
Since TRANSIMS is a disaggregate representation of individual traveler’s activities,
complete tours are its basic feature. Also, mode choice makes sense only on a tour basis
since mode choice involving only trips would require changes to the activity pattern of
the individual traveler. For example, without access to a non-personal auto, a traveler on
a bus tour could not have an auto trip placed in the middle of the tour without walking all
the way home to get the car—which would add a trip to the tour.

It is not unusual in current transportation practice to develop mode calibration functions,
usually logits, for large subsets of the tours. For example separate logit calibrations are
developed for home-based work tours, home-based other tours, etc. The method of
modeling in the Study is to use smaller groups of tours and simple, calibrated one-
parameter models for determining mode choice. A different value for the parameter is
estimated for each group of traveler tours. Tours are placed in groups of similar tours,
defined as tours that are likely to produce nearly the same calibration parameter.
Calibration is done independently for each group. The Study demonstrates this procedure
for one small group of like tours.

The procedures for the Study follow the steps outlined in the GMD. The calibration stage
is completed in the Study by sampling tours from the base year activity set. It could be
just as well accomplished by locating activities from the activity survey on the base year

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 4

TRANSIMS network and calibrating each grouping from the trips between the activity
locations. This is the usual approach in transportation mode choice modeling. In the
TRANSIMS Framework, the survey activities are located on the TRANSIMS network so
that the Route Planner’s “rational choice” behavior can be estimated.

The calibration and application steps used in the Study are:

1) Groupings of tours are determined that are likely to have, on a statistical basis, the
same mode choice characteristics. Additionally, the form of a calibration function is
determined. The groupings and the calibration function are user-defined choices and
are based on the modeler’s knowledge and past determinations of those factors that
influence mode choices.

2) A calibration strategy for the first stage, , is determined. In the Study, the
mode assignments from the Activity Generator for the modes BI, S, M, and X are
taken unchanged.

(DMPU |1
)1()

3) The modeler decides on the mutually exclusive partitions of the tour routes when the
X mode tours are routed using the general transit mode T. Two partitions are used in
the Study. The first, , is for tours that contain only walk legs. The second, , is
those tours that contain at least one transit (either bus or light rail) leg.

ws ts

The following second stage calibration and application steps are completed for each of
the tour groupings. Steps 4-7 are the calibration stage.

4) A random sample of the tours, all of type X, for each grouping is drawn from the base
year activity set.

5) Each of the selected tours is routed with both the auto mode (A) and the general
transit mode (T). These routings produce travel characteristics such as travel times
and monetary costs for the two modes. Additionally, routing by T partitions the
sample into mutually exclusive sets depending on the “rational choice” behavior of
the Route Planner. In the Study, two sets are considered—those tours will only walk
legs, , and those with at least one transit leg, . The proportions, ws ts w

Rp and t
Rp (see

Section 2.2.1 of the GMD), are estimated from the proportion of tours that are
classified as or . ws ts

6) The target values for auto, walk, and transit are determined from the calibration data
and the estimates of w

Rp and t
Rp . (See equations 14 to 16 of the GMD.)

7) Two sets of calibration parameters (in the Study each set consists of only one
parameter) are determined. The first allows for choice between auto (A) and
generalized transit (T) given that the Route Planner “chooses” the partition ; that is,
that the tours contain only walk legs. The second allows for choice between auto (A)
and generalized transit (T) given that the Route Planner “chooses” the partition . In
this case, the choice is between transit legs and auto. It should be noted that these data
could be used to calibrate a logit choice model for both partitions. Fitting a logit here

ws

ts

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 5

implies that the modeler believes that the probability of auto or transit (A or T) is a
monotone function of some linear combination of the variables not used to stratify the
groupings. In the Study, we use a semi-parametric approach similar to that shown in
the GMD.

Steps 8-10 are for applying the calibrated second stage choice functions to a forecast
year.

8) A random sample of tours of the specified type or grouping is selected from the
forecast year activity set. These tours are routed both in the A and T modes. The costs
associated with these tours are retained, and mode assignment for the forecast year is
based on them. If complete parametric calibration fits, such as logits, are produced in
step 7, then this step is not necessary.

9) Using the above parametric or nonparametric calibrations, mode choices are made for
each tour in the forecast population.

10) All of the above procedures are statistical in nature, and the quality of the calibration
is judged on a population basis. In individual cases, the mode assignment may be
unrealistic. If there are a great number of these cases, they need to be iterated to
produce more realistic results. For example, an analyst may wish to change the modes
of travelers with more than three or four transfers on transit trips to auto. In this
process, a similar number of travelers whose mode is auto would have a mode change
to transit. Care must be taken in these iterations to maintain calibration.

The variables considered for stratification and the choice function used in the Study are
described in the next sections. In the Study, one strata is chosen for analysis. A random
sample of 99 tours from that strata for the base year is selected for calibration. Mode
choice is calibrated for this strata using a simplified cost function. A second sample of
100 tours is selected from the base year activity set as a surrogate for the forecast year.
Modes are assigned to this sample using the calibration determined from the first sample.

2.1.1 Model: Cost Function and Stratification

The mode choice modeling in the Study is in two stages—development of a generalized
cost function and a set of stratification variables. The basic approach assumes that if a
tour’s generalized cost on each of two modes is evaluated, then the tour will be more
likely to “prefer” the one with the lower cost. The cost function itself, however, is only
one stage of the modeling. The other stage is stratifying the data to create subgroups of
tours that are similar in their mode choice characteristics. The choice of the stratification
parameters implicitly includes them in the mode utility without being included explicitly
in the generalized cost function.

In preparing the stratification and cost function for the Study, all of the variables listed in
Table 1 were considered.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 6

Table 1. Potential mode-choice parameters considered.

Variables
work/non-work tours
travel time
distance traveled
household income
river crossings
CBD/non-CBD
distance to transit
dollar costs
urbanization of locations
age
departure time
time of day
tour complexity
fraction of workers in HH
mode reliability
mode “comfort”
presence of children
single/multiple-family dwelling

Clearly, some of these variables are redundant, and some are unsuitable for modeling in a
forecast setting. It was decided that the travel time, dollar-cost, and household income
should be included in the cost function, in part because they were deemed important for
the mode decision, but also because they lend themselves most easily to the continuous
nature of the cost function without further parameterization. The tour type (work, non-
work), home urbanization (very urban, urban, or suburban), and primary anchor
urbanization were selected to be part of the stratification. The “effective” utility for mode
choice, therefore, includes time, cost, income, home and anchor urbanizations, and tour
type.

2.1.1.1 Cost Function

The generalized cost function used in the Study is

()()log 1.01 min 0,i ic Income Time DollarCostα= ⋅ + ⋅ + i

for mode i, where the Timei is the total time spent traveling between locations on a tour,
including all trips. Income is the household income, although any negative number is
made zero and 1.01 is added to keep the logarithm well behaved and the mode choice
consistent with respect to time. The DollarCosti is a measure of the monetary cost of the
tour by mode i. This function exhibits the trade-off between the monetary cost for
traveling by a mode and the time it takes to make the trip using the mode. The
relationship between a traveler’s time and monetary cost is weighted by both the
household income and the calibration parameter α. The same cost function is used to
compare the utility of different modes by using their respective time and dollar-costs in
the function.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 7

2.1.1.2 Stratification

Mode calibration and application in the Study is demonstrated using one strata. This
strata is comprised of those tours where the primary tour purpose is work. Additionally,
the home and work locations are in very urbanized areas. The total number of strata for
the entire population is 18. This is the result of having two choices for tour type and three
each for the home and primary anchor urbanizations. Each of the 18 strata would have its
own calibrated values of α. These selected stratification makes use of naturally discrete
variables, so no additional parameters are required to further split the stratifications.

Using the assumption that tours whose activity locations are far from transit will be
highly unlikely to use transit, another stratification is introduced to determine mode-
choice rule-sets. Tours are stratified by the distance-to-transit of the home and primary
locations on the tour. The assumption is that no one will walk for several hours to take a
bus, but that if the home location is far from transit but the primary anchor is not, they
may use Park & Ride. The additional four strata are: origin near and destination near
transit (ONDN), origin far from transit but destination near (OFDN), and the remainder
of tours that all have destination far from transit (DF). For ONDN tours, travelers may
choose the transit modes or auto mode; for OFDN tours, pure transit tours are excluded,
but Park & Ride allowed; and for DF tours, transit is excluded altogether. Using these
definitions, there are 2⋅3⋅3⋅3=54 strata, but the number simplifies. For all of the DF tours,
the additional assumption may be made that walking, biking, or any transit mode is
infeasible, leaving only auto modes for all tours. Under this assumption these tours do not
need to be examined any further—all are assigned to auto tours.

Table 2. Calibration target mode splits determined from the survey.
work/non-work home urbanization work urbanization transit distance Walk Bike Transit Park &

Ride
Drive
Alone

Total

work very-urban very-urban ONDN 59 2 41 0 51 153
work very-urban very-urban OFDN 0 0 0 0 0 0
work very-urban very-urban DF 0 0 0 0 0 0
work very-urban urban ONDN 14 3 2 0 39 58
work very-urban urban OFDN 0 0 0 0 0 0
work very-urban urban DF 0 0 0 0 0 0
work very-urban suburban ONDN 0 2 9 1 52 64
work very-urban suburban OFDN 0 0 0 0 0 0
work very-urban suburban DF 0 0 0 0 0 0
work urban very-urban ONDN 44 24 101 6 242 417
work urban very-urban OFDN 0 0 0 0 0 0
work urban very-urban DF 0 0 0 0 0 0
work urban urban ONDN 23 13 31 0 256 323
work urban urban OFDN 0 0 0 0 0 0
work urban urban DF 0 0 0 0 0 0
work urban suburban ONDN 7 2 21 0 430 460
work urban suburban OFDN 0 0 0 0 0 0
work urban suburban DF 1 2 0 0 41 44
work suburban very-urban ONDN 33 8 60 140 414 655
work suburban very-urban OFDN 1 0 2 25 54 82
work suburban very-urban DF 0 0 0 0 0 0
work suburban urban ONDN 10 4 12 7 372 405
work suburban urban OFDN 1 0 0 0 59 60
work suburban urban DF 0 0 0 0 0 0
work suburban suburban ONDN 65 19 43 12 2225 2364
work suburban suburban OFDN 4 0 0 1 552 557
work suburban suburban DF 17 3 0 0 380 400

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 8

work/non-work home urbanization work urbanization transit distance Walk Bike Transit Park & Drive Total
Ride Alone

non-work very-urban very-urban ONDN 109 4 12 1 29 155
non-work very-urban very-urban OFDN 0 0 0 0 0 0
non-work very-urban very-urban DF 0 0 0 0 0 0
non-work very-urban urban ONDN 13 5 7 0 26 51
non-work very-urban urban OFDN 0 0 0 0 0 0
non-work very-urban urban DF 0 0 0 0 0 0
non-work very-urban suburban ONDN 4 0 8 0 13 25
non-work very-urban suburban OFDN 0 0 0 0 0 0
non-work very-urban suburban DF 0 0 1 0 1 2
non-work urban very-urban ONDN 29 5 26 1 94 155
non-work urban very-urban OFDN 0 0 0 0 0 0
non-work urban very-urban DF 0 0 0 0 0 0
non-work urban urban ONDN 138 16 21 0 295 470
non-work urban urban OFDN 0 0 0 0 0 0
non-work urban urban DF 0 0 0 0 0 0
non-work urban suburban ONDN 16 2 9 0 170 197
non-work urban suburban OFDN 0 0 0 0 0 0
non-work urban suburban DF 1 0 0 0 11 12
non-work suburban very-urban ONDN 11 0 12 8 73 104
non-work suburban very-urban OFDN 1 0 0 1 17 19
non-work suburban very-urban DF 0 0 0 0 0 0
non-work suburban urban ONDN 14 1 4 0 200 219
non-work suburban urban OFDN 0 0 0 0 14 14
non-work suburban urban DF 0 0 0 0 0 0
non-work suburban suburban ONDN 212 14 38 4 1527 1795
non-work suburban suburban OFDN 1 0 0 0 244 245
non-work suburban suburban DF 31 4 1 0 239 275
 Total 828 129 460 207 7881 9780

2.1.2 Calibration of this Model

In the Study, mode calibration is made using the non-logit form of the cost function
shown in the previous section. Two mutually exclusive partitions of the “T” mode tours
are used. These are tours with all walk legs and those with at least one transit leg.They
are denoted by and . Therefore, each stratum has two parameters to be calibrated.
There is a separate value of α in the cost function of Section 2.1.1.1 for each of the sets s

ws ts
w

and st. Each set of two parameters is for a distinct subset of tours in the stratum. The
parameters are estimated with two one-dimensional fits—not a single two-dimensional
fit. These fits are easily accomplished using any one-dimensional search algorithm. This
is especially true because our experience has shown the relationship between the transit
fraction and the calibration parameter α to be monotonic in most cases.

Two conditions can make calibration using the type of cost functions of Section 2.1.1.1
impossible. Consider two costs from the same tour routed by different modes. The costs
determine which tours prefer the first mode and which prefer the second based on the
mode that exhibits the smaller cost. A representation of this with the line showing where
the costs are equal is shown in the first panel of Fig. 1. Here, the y-axis is the difference
in travel times, T1 – T2; and the x-axis is a scaled difference in the costs for the tours,
(D2 – D1) / f(I). The points in this figure are plotted with a fixed value of the calibration
parameter, α.When α is changed, the costs of the tours change and the points move.
Some of the points can move above and some below the line simultaneously, so this is
not a good way to visualize the effect of changing α. Instead, the cost function is broken
into its component parts (time and monetary costs) and their differences examined

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 9

independent of α. This is shown in the second panel of Fig. 1. In this case, it is the line
that splits the tours into those preferring mode-1 to mode-2 that moves, and the points
themselves that are fixed. This plot has an additional benefit in that it clearly shows
which tours are fixed to a single mode. Because α is non-negative, the line that splits the
two groups must lie in the upper-right and lower-left quadrants of the plot. Any points in
the upper-left and lower-right quadrants will not cross the line no matter the value of α.
For example, in the upper-left quadrant of the figure, the time of the first mode is greater
and the monetary cost is more, meaning that regardless of the value of α, mode-1 always
has a lower utility according to the cost function. If too many points lie in these
quadrants, the cost function cannot necessarily be calibrated to match a desired mode
split.

Co
st

2

Cost1

T 1
-T

2

(D2-D1)/f(I)

Cost1 less

α+

α−

Cost2 less

Fig. 1. Two ways to visualize the cost function comparisons.

A second condition that precludes calibration is if the angular distribution of tours is
symmetric across the origin in the upper-right and lower-left quadrants of the second
panel of Fig. 1. In this case, there will be a constant mode split independent of α. Since
the trade-off is usually between time and monetary costs, however, this condition would
rarely occur. Almost all strata will have tour costs concentrated in either the upper-right
or lower-left—not both.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 10

Tr
an

sit
 F

ra
ct

io
n

Alpha

minimum transit fraction

maximum transit fraction

Fig. 2. Minimum and maximum mode splits available and the calibration curve as a
function of α. Calibration to transit target values outside the maximum and minimum
transit fraction bounds is not possible..

Both of the above conditions bound the possible fraction of transit tours. Fig. 2 illustrates
the effect of both of these conditions. In this figure, the maximum and minimum possible
transit target fractions and the calibration function as it changes with α are given. The
two conditions cited above can tend to move the maximum and minimum target values
together. In most cases, they will reduce the maximum and increase the minimum
possible transit fraction, but the target will still lie safely in between. Only when the
target fraction lies outside the possible range is the model unable to be calibrated for the
particular stratum. When that happens, the user can do several things. In such cases, the
stratum may be merged with a similar one, or if it is deemed that the model is incapable
of describing features of that stratum, a new model or cost function could be developed
particular to that stratum.

The proportion of tours where the cost is lower, using one of the generalized transit
modes (walk only or at least one transit leg), than it is to drive is a function of the
calibration constant α. There is no mathematical reason for this proportion to be a
decreasing or increasing function of the calibration constant. This is apparent from the
right-hand panel of Fig. 1. Since there are points in both the upper-right and the lower-
left quadrants, new points appear above the line while others move below the line as
α sweeps from left to right. In this case, the proportion of points above the line is not
monotone with α. If, for a particular cost function, this lack of monotonicity is severe,
then a new cost function must be devised since such cost functions are unsuitable for
calibration. In those cases where there are no points in either the lower-left or the upper-
right quadrants (but not both), then the calibration function is monotone with α.

The Study mode methodology considers home-to-home tours. Such a tour is defined as
the sequence of trips and activities starting at the home location and returning to the
home location. A second departure from the home location produces a second tour, which

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 11

is considered independently from the first (aside from demographic and home
information being identical).

Tour calibration information is gathered into a tour-based database. A general tour-based
database consists of four types of data: traveler/household demographics, whole-tour
information, home information, and primary anchor information.

The scripts to generate this generalized database are found in Appendix B of this Chapter.

All of the fields are listed by-category in Table 3. However, not all of these variables are
used to determine mode assignment in the Study.

Table 3. Tour database fields.

Demographic Tour Home Primary Activity
HH Tour Number Zone Activity ID
Traveler Tour Act River Zone
HH Income Tour Type Urbanization River Zone
Age Tour Mode Transit Distance Urbanization
 Mode Preference Transit Distance
 Time Parking Zone
 Distance Activity Mode
 MultiMode
 Shared
 SubTours
 CrossColumbia
 CrossWillamette
 RailOnly
 MaxTranDist
 ModeString

The demographic data is self-explanatory. Both the home and anchor locations have four
zone classifications:

• the 1260-zone (TAZ) number;

• a river zone (where 1=North of the Columbia, 2= South of the Columbia, West of the
Willamette, and 3= South of the Columbia, East of the Willamette);

• an urbanization value (1=very urban, 2=urban, and 3=suburban); and

• a Euclidean distance to the nearest transit stop.

The primary anchor has three other fields:

• the activity ID of the primary anchor,

• one of the seven parking zones defined below, and

• the mode of travel to the primary anchor activity.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 12

The tour number is the unique identifier (with Traveler ID) for a tour. The tour activity is
the first non-home activity on the tour, which is the required field for the Activity
Regenerator to change all locations on a tour. For changing modes in the Activity
Regenerator, any activity on the tour (such as the anchor activity) can be used.

The primary activity is classified as follows:

• If there are any work, school, or college type activities in the tour, then the longest
among them is the primary activity, and the tour type is classified as “work”. In
the Study, school and college are excluded from calibration.

• If there are no work, school, or college activities, but there is at least one shopping
activity, then the longest shopping activity is the primary activity, and the tour is a
“shop” type tour.

• Otherwise, the longest duration activity is the primary activity, and the tour type
is “other”.

In the Study, the ModePreference for the tour is set as mode to the primary activity.
When tours are classified according to destination distance to transit (ONDN, OFDN,
DF), it is the primary activity that is considered to be the destination.

The tour travel time and distance are accumulated throughout the tour. For travel between
each location, the values of the Route Planner’s estimate of travel time and the Euclidean
distance between locations are accumulated. The number of subtours in a tour is also
accumulated. Each time a traveler returns to an activity location previously visited in the
same tour, all activities in between are part of a subtour. Note that, in the Study, all
information from subtours except the existence of shared auto rides is ignored.

The multi-mode field is non-zero if the tour makes use of more than one mode. The
number of rail-only activity modes is also reported, as are the number of trips in the tour
that crosses each of the rivers. The maximum distance to transit from among all activity
locations is not currently used in mode feedback, but may be useful in mode feedback in
the future.

The “shared” field of the tour database reports intra-household shared rides in a traveler’s
tour. The hierarchy is:

• 0 = individual trips only,

• 1 = passenger on subtour only,

• 2 = passenger on main tour,

• 3 = driver on subtour only, and

• 4 = driver on main tour.

Any occurrence of a trip with a higher number redefines the “shared” tour number. That
is, if shared = 3, there are no main tour driver trips, but the traveler may or may not have
been a passenger on the main tour.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 13

The Collator collects the mode strings produced by the Route Planner for each trip. A
typical example is that an auto trip may be wcw, where the w's are the walks to and from
the auto, and the c is the driving part of the trip. When creating the tour-based database,
all of the mode strings for non-subtour trips on the tour are concatenated to produce the
tour mode string.

Table 4. Tour modes in the tour database.

Mode = Description
1 walk, bike, or inter-household shared ride
2 auto
3 bus
4 rail
5 mixed transit
6 mixed auto and transit

Table 4 describes the numeric values assigned to the tour modes in the database. If the
mode is bike only, school bus only, or inter-household only, then that mode exclusively
defines the tour. Otherwise, the tour contains at least one trip of what has been called
mode X. The tour mode string is used to determine the tour-mode. Any occurrences of
inter-household shared rides, school bus, or bicycle mode are ignored. If there are all
walks in the tour, the tour is a “walk” mode tour. If there is only walk with one of auto,
bus, or rail, the non-walk mode defines the tour mode. (For example, a tour with modes
auto-walk-walk-auto is classified as an auto tour.) If there is only walk, bus, and rail, the
tour is “mixed transit”. And, if there is any combination of walk, auto, and bus and/or
rail, the tour is mixed auto and transit. For calibration and application purposes in the
Study, mixed-transit is considered bus, and mixed-auto-and-transit is considered auto.

2.1.3 Travel Time Definition

The travel time used in the cost function is the in-motion time for an entire tour. This
excludes time spent at an activity location, but includes all time spent in going between
activity locations. For a home-work-home auto tour, it would include the time spent in
the auto, as well as time spent walking to and from the auto.

Some trips are not routable, and the Collator reports “NA” for their travel times. An
example of such a trip is an attempted walk when no walk path exists. If any trip on a
tour has an NA travel time, then NA is reported for the entire tour. In the processing of
that time for fitting or assigning modes, however, the NA is converted to 24 hours for
calculation purposes.

Note that travel on subtours is not included in the accumulation of tour travel times.

2.1.4 Monetary Cost Details

The generalized cost function makes use of two types of monetary cost incurred on a
tour. In the Study, all transit tours are assessed a cost of $1.00. It was found that all strata
could be calibrated regardless of the value of the cost, as long as it was the same order of
magnitude as $1.00. This does not mean that the mode split is insensitive to transit cost,

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 14

but that the calibration process is indifferent to it. With different transit costs, the cost
function parameters will change, but a fit is still possible. The second cost in the Study is
the auto cost. The average long- and short-term parking prices by Traffic Analysis Zone
(TAZ)is used and is shown in Table 5. The fields in the table are the TAZ, the short- and
long-term parking costs in dollars, and a description of the geographic location in the
Portland area. In addition to parking costs, each driver is assessed $.03 for each kilometer
traveled by auto.

It should be noted that the term in the generalized cost function used in the
Study drives the choice of modes. This term reflects the balance between transit cost and
driving costs. It is evident from Table 5 that very few zones have nonzero parking costs,
so almost all of the driving costs are comprised of the $.03 per kilometer charge.

iDollarCost

Table 5. Parking costs by location.

TAZ Short Long Location
1,2,10-16 2.47 4.94 CBD South of Burnside
3-6 1.59 3.18 CBD North of Burnside
43 1.38 2.76 Oregon Health Sciences University
510,934-936 0.80 1.59 Oregon City
846-847 0.00 3.03 Lloyd District
971-981 0.85 1.70 Vancouver WA
 0.00 0.00 all other zones

Note that the costs described are for an entire tour. A particular traveler might use transit
several times, or have an activity set that makes many auto trips in the central business
district. In either case, the appropriate costs are incurred only once in the Study model.

2.1.5 Urbanization Value

The “Urbanization” indicator for an activity location is the sum of two values: retail
employment within 1 mile, and the total number of employees whose homes are within
30 minutes transit travel time (including in-vehicle, wait, and walk time). In the Portland
network used for the Study, the largest number of retail locations within a mile of transit
is 17,709, and the largest number of possible employees within 30 minutes transit-
distance is 267,874. The boundaries between subgroups are chosen to be as shown in
Table 6. The three categories of urbanization are listed in the first column. In the second
column are the ranges of values of urbanization defining that category, and in the last
column contains the number of zones (TAZ) in each category.

Table 6. Urbanization values.

 Range of Values Resulting Number of Zones
Very Urban 203168 – 283864 28
Urban 62649 – 203167 106
Suburban 0 – 62648 1113

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 15

2.1.6 “Near Transit”

A different set of mode choice rules is applied to people based on their distance to transit.
In the Study, an activity location within 1000 meters (about a 15-minute walk) of a transit
stop is considered to be “near transit”.

The origin of the tour is defined as the home location, and the destination as the primary
activity location (described in tour classification rules above). Hence, an ONDN tour is
one with the home location within 1000 meters Euclidean distance of any transit stop and
the primary activity location within 1000 meters Euclidean distance of any transit stop.
This is no guarantee that every activity on the tour is near a transit stop, or that a trip
between home and the primary destination are even connected through the transit system.

2.1.7 Other Notes

In all mode assignments in this Study, it is assumed that the non-auto, non-generalized
transit modes are correct as chosen by the Activity Generator. In practice, these mode
assignments would be made through a calibrated first stage choice function.

In the calibration of the ONDN strata, some additional data filtering is performed. All
tours involving any shared ride component are ignored. Even the inclusion of tours
having only a passenger shared-ride trip on a subtour would have required carefully
reinstating the subtour modes. Repairing damage to other types of shared rides would
require substantially more modeling. In addition, only travelers over the age of 15 are
included, since driving is not an option for those under that age—they must either be on
(generalized) transit or be a shared-ride passenger. If one of these travelers has an
infeasible transit tour, then the activity locations must be changed.

Some transit trips, including walks, are considered to be unfeasible due to their length.
Unfeasible transit is defined in the Study as any transit trip over 24 hours or having more
than three transfers.

Any tour that is a one-stop walking tour with a very short duration at a social/recreational
activity type is left as it is in the survey. These represent recreational walks or jogs and
should not have their modes changed; however, some may require an activity location
change.

2.2 Results of Calibration and Application

The mode choice methodology is illustrated in this section for one of the strata, very
urban to very urban ONDN work tours. The calibration target values for this particular
strata are given in the first line in Table 2. This results section is split into the calibration
stage and those related to application. Both stages are described in the preceding sections
of this document and the GMD. The non-logit cost function described in Section 2.1.1.1
is used as the basis for mode choice.

In the calibration stage, 99 tours are selected at random from the very urban to very urban
ONDN work tours. Only tours with the “X” type mode to the primary work anchor are

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 16

considered. To facilitate routing, a new activity set is created for the tours in the sample.
In this activity set, the selected tours comprise the entire activity set for the traveler.
Modes of subtours of the main tour are all set to inter-household shared ride, or mode=8
in the Study.

The application stage is demonstrated using a sample of 100 tours. Three methodologies
for mode choice using the non-logit form of the calibration function are demonstrated. It
is shown that calibration is maintained for the application tours when routing is
completed by: both auto (A) and generalized transit (T), generalized transit alone, or auto
alone.

2.2.1 Initialization and Calibration

The calibration sample of 99 tours is selected from the ONDN/work/home in very-
urban/work in very-urban stratum. This strata is denoted as ONDN w.1.1. These tours
satisfy all of the conditions listed previously; that is, non-drivers and non-simulated
modes (e.g., bikes, school buses, and inter-household shared rides) are not selected. There
are 2556862 tours in the activity set: 1945475 are within 1 km of transit for both the
origin and destination and are in the ONDN classification. Of those, 7634 tours are in the
work (or college/school), ONDN w.1.1, stratum. On eliminating those tours with shared
rides, travelers under the age of 16 and college/school as the primary anchor, 5407 tours
remain. The calibration sample of 99 tours is selected from these.

2.2.1.1 Cost Function and Target Values

The cost function for the calibration is given by:

()()log 1.01 min 0,i ic Income Time DollarCostα= ⋅ + ⋅ + i

as described in Section 2.1.1.1. Here, Timei is the travel time for the primary tour,
excluding any subtour times. The DollarCosti is $1.00 for all transit tours, and for auto
trips it is $.03 per km plus any parking cost. There is no DollarCosti for walking trips.
Income is the household income, and α is the calibration parameter. The values for Timei
and DollarCosti are obtained by routing the tours by both generalized transit (T) and auto
(A).

The target values for the chosen stratum, work tours, home location in very-urban zone,
primary anchor location in very-urban zone, home near transit and primary anchor near
transit, ONDN.w.1.1, are shown in Table 7.

Table 7. Target mode split from survey data.

Fraction Anchor Mode
.39 Walk
.27 Transit
.34 Auto

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 17

2.2.1.2 Activity File Preparation

For calibration purposes, an activity file is created containing only the activities that are
part of the 99 selected tours. Matching this is a one-traveler-per-household population file
having only travelers whose tours were selected. The resulting activity file is slightly
modified. Activity IDs are renumbered so that the N-trip tour is numbered from 1 to N.
The upper and lower bound of the start time for the first activity of every tour is changed
to zero, and the duration of that activity has the duration lower bound set equal to the
end-time lower bound, and the duration upper bound set equal to the end-time upper
bound. The final activity in the tour also has its times changed. The upper and lower
bound of the end time for the last activity of every tour is changed to 27 hours, and the
duration of that last activity has the duration lower bound set to the time difference of 27
hours and the original start time upper bound, and the duration upper bound set to time
between 27 hours and the original start time lower bound. The population file is
generated in a similar way. The household and traveler IDs are matched to those in the
original population file. Only the household or person entries that match are included in
the new population file. The field of the household lines that specifies the number of
persons was changed to one for each household.

To match the target value definitions, subtours are eliminated from the mode calibration.
These could be physically removed from the activity set, but here subtour activities have
their modes changed to inter-household shared rides, or mode=8 in the Study. This
particular mode is not simulated, and the Route Planner does not alter the departure or
arrival times of the activity. This leaves the Route Planner’s estimated travel times for the
primary tour unchanged. The subtour mode change is accomplished by creating a new
iteration database for the selected and re-numbered tours and travelers. That information
is used to identify subtours. The modes in the subtours are changed to mode=8 through
the Activity Regenerator. An “MS 8” Activity Regenerator command is prepared for each
subtour, and the Activity Regenerator is executed. The resulting new activities are
merged into the original activities. More information on Activity Regenerator feedback
commands can be found in TRANSIMS Ver. 3, Volume Three (Modules), Chapter Three
(Activity Generator), Section 5 (Activity Regenerator).

2.2.1.3 Obtaining a Cost Database and the Route Planner Proportions

The selected tours are routed by both modes A and T to determine the “costs” for the
tours. Iteration and tour databases are created for both routings. These results are
combined to make a tour-based cost database. The “rational choice” Route Planner mode
split between all walk legs and at least one transit leg is determined from the routing data.
These are used in conjunction with the target values to determine the target proportions
for auto mode within the context of a given router transit mode. These proportions are
used in computing Equations 14, 15, and 16 of Section 2.1 of the GMD. In the Study,
light rail is combined with any transit, so the three equations become two where equation
15* is a combination of 15 and 16, with rail and bus treated together as "transit" (t). That
is, bt = bc + lc, and Equation 15* is:

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 18

t
Rtcc

t
l
R

b
Rcccc

cc
t

t
U pbwa

b
pplbwa

lb
DsAMP

)(
1

))((
1),|(2 ++

−=
++++

+
−==

To route all of the sampled tours by transit: auto, walk, and rail mode trips are changed to
the general transit (T) mode, which is mode= 3 in the Study. This step is completed using
the "M 3 1 2 4" feedback command to the Activity Regenerator for every tour in the
sample. Because all tours are affected, no merging is necessary.

The activities generated above are routed. Those routes are combined with the activities
to create a transit iteration database. This database is converted to a tour-based database.

For the 99 samples, the Route Planner “rational choice” mode split between all walk legs
and any transit leg results in 43 samples being walk, and the remaining 56 transit. These
are summarized in Table 8.

Table 8. Route Planner generalized transit mode split.

Anchor Mode Fraction
Walk 0.434
Transit 0.566

The values of Equations 14 and 15* are in Table 9. These are the calibration target
proportions of auto assignments conditional on the “rational choice” behavior of the
Route Planner. That is, if the Route Planner assigns a tour as walk when the assigned
mode is generalized transit (T), then 90% of these tours should be assigned the mode T,
while the remaining 10% should be assigned auto (A). When the Route Planner “rational
choice” has at least one transit leg, the mode assignment is 48% generalized transit (T),
and 52% auto (A).

Table 9. Calibration target proportions for Auto.

Anchor Mode Proportion
Walk Eq. 14 = 0.100
Transit Eq. 15* =0.520

The transit tour database is used to create an activity feedback file where all generalized
transit (T) trips are converted to auto (A). The feedback commands used for this purpose
are of the form “M 2 3”. The Activity Regenerator is executed with these commands to
create an activity set where the tour modes are auto (A). The resulting activities have only
auto and inter-household shared ride modes. These auto activities are routed, and the
routes and activities are collated to create the auto iteration database. The iteration
database is condensed into a tour-based form, and that database is further filtered to
obtain the auto travel times for each tour.

The two tour-based databases—one for routing by auto, the other from routing by
generalized transit—are combined to form a tour cost database. This file contains all of
the information necessary to compute the generalized cost functions for each tour under
both modes.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 19

The fields of this database are given in Table 10. Fields labeled with a "T-" refer to the
values for the generalized transit (T) mode routing. Those marked with "A-" refer to the
auto (A) mode routing.

Table 10. Tour cost database fields.

Field Description
HH Traveler’s HouseHold ID
Trav Traveler ID
Act Activity ID for the first non-home activity in the tour
Income Household income in dollars
Parking Zone ID of the parking location of the primary anchor activity
T-Time Tour travel time, excluding subtours
T-AnchorMode Mode of trip to anchor from previous activity
Distance Accumulated Euclidean distance between activities on tour
A-Time Tour travel time excluding subtours
A-AnchorMode Mode of trip to anchor from previous activity
ParkingCost Dollar cost to park in Anchor Parking on a work tour

The two calibrations, walk against auto and transit against auto, are performed separately.
For the walk/auto calibration, an α of 0.0000033 yields the target 39% total walk tours
(90% of the 43 walk-possible tours) as walks. For transit/auto calibration, an α of
0.00004 yields the target transit tours at 27% of total tours (or 48% of the 56 transit-
possible tours) as transits. All remaining tours are auto, and therefore match the 33%
target proportion of total tours. The proportions quoted here are for a deterministic
evaluation of the cost function, obtained by choosing the mode with the lower cost for
each tour. The results are summarized in Table 11.

Table 11. Calibrated mode split for the sample data.

Count Anchor Mode
39 Walk
27 Transit
33 Auto

The purpose of the calibration stage is to determine the calibration parameters. In the
Study, they were found to be α=0.0000033 to calibrate walk vs. auto tours and
α=0.00004 to maintain calibration in tours with transit legs vs. auto tours. These
calibration parameters are used in the Section 2.2.2 (Application).

2.2.2 Application

In actual applications, the parameters determined in the calibration stage are used to
assign the modes for each tour in a forecast year. If all of the tours in the forecast year are
routed by both generalized transit (T) and auto (A), then application proceeds by
comparing the costs for the two routings and making a generalized transit (T) or auto (A)
decision based on these costs. The decision may be made probabilistically using either a
logit or a non-logit form of the calibration function. In the non-logit case, randomness
may be introduced based on the costs nearest the tours in question. This procedure is

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 20

outlined in the GMD. When using a non-logit procedure, a pre-application sample of
tours is drawn for each of the strata considered. These are routed using both modes—auto
(A), and generalized transit (T). From these, the Route Planner’s “rational choice” splits
are determined. The data in each “rational choice” classification are used to establish the
mode choice probabilities.

As an illustration of the application procedures in the Study, the base year is treated as
the forecast year and a sample of 100 tours from the ONDN w.1.1 strata is chosen, and
the modes are assigned to these tours. As a demonstration, modes are assigned to the
tours in the sample rather than the entire set of tours in the forecast year ONDN w.1.1
strata. The three methods of mode assignment described Section 2.3.3 of the GMD are
shown.

This Section is broken into five subsections, one describing the pre-application sampling
procedure, and one illustrating each of the non-logit application procedures. The last
subsection compares the results of the three methodologies and describes the differences
between the pre-application and calibration samples.

In the second subsection, modes are assigned considering information obtained by
routing by both auto and generalized transit. The third subsection shows the procedures
when routing is available for only the generalized transit mode. In the fourth subsection,
the technique for assigning modes using information determined by routing only auto
tours is demonstrated.

2.2.2.1 Preapplication Sampling

A random sample of 100 tours is drawn from the ONDN w.1.1 strata and is used as the
basis for the mode methodology applications. These tours are routed with both
generalized transit (T) and auto (A) modes. The tours are split by the “rational choice”
behavior of the Route Planner forming a set of walk and a set of transit mode choice data.
The costs for auto and transit are evaluated with the calibration constants determined in
the calibration phase. Fig. 3 shows the application sample cost data for both of the
“rational choice” splits of the Route Planner. The calibration functions are superimposed
on these plots as straight lines.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 21

Fig. 3. Panel (a) shows the auto and walk costs for the application sample when the
Route Planner “rational choice” mode is walk. The application costs for transit and auto
when the Route Planner “rational choice” is transit are shown in panel (b).

The results of the Route Planner’s split of the application sample into all walk legs and
those requiring at least one transit leg are shown is Table 12. The differences in these
proportions and those given in Table 8 for the calibration sample are discussed in Section
2.2.2.5.

Table 12. The proportions of application samples from the “rational choice” split
from the Route Planner.

“Rational Choice” Proportion of Sample
Walk 0.51
Transit 0.49

Table 13 shows the mode split for the 100 application samples obtained by a direct
comparison of the auto and transit or walk costs. These deterministic counts are used as a
comparison for the results of stochastic procedures given in the following sections. The
mode splits for the application sample differ from the mode splits of the calibration
sample given in Table 11. These differences are discussed in Sections 2.2.2.5 and 3.3.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 22

Table 13. Deterministic mode split for the application sample.

Count Anchor Mode
45 Walk
26 Transit
29 Auto

2.2.2.2 Mode Assignment Using Generalized Transit and Auto Costs

Assigning modes using both the auto and general transit costs follows the procedures
outlined in Section 2.3.3 of the GMD and illustrated by panel (a) of Fig 3 in that
document. In this methodology, each tour in the forecast year is routed twice. One route
is completed using the auto mode (A), while the other is by generalized transit (T). Since
each tour is routed by both modes, the “rational choice” selection of the Route Planner is
known for the individual tours. Mode assignment for a particular tour is made by using a
subset of the assignment sample appropriate for the “rational choice” selection of the
Route Planner for that tour. The probability of assigning auto to the tour is determined
from the proportion of tours with a lower auto cost than transit cost from the tours of the
application sample with transit and auto costs similar to the transit and auto cost of the
tour under consideration.

In the Study, the methodology is applied to each of the tours in the application sample.
The average or expected values for multiple applications of the methodology to the
application sample are given in Table 14. The deterministic mode splits given in Table 13
are reproduced here for comparison. Since the procedure is stochastic, multiple
assignments of modes to the application sample give slightly different results. Variability
of this and the other mode choice procedures is discussed in Section 3.

Table 14. The expected and deterministic mode split for the methodology using both
generalized transit (T) and auto (A) costs to the application sample.

Expected Deterministic Anchor Mode
44.8 45 Walk
26.6 26 Transit
28.6 29 Auto

The final step in the methodology is to iterate to remove unreasonable mode choices. In
this step, walks that are considered to be too long or transit tours with legs requiring too
many transfers are changed to auto tours. For each mode change to auto, a corresponding
auto tour is stochastically selected and its mode changed to the appropriate mode. This
step is not completed in the Study because the stochastic selection requires that all the
tours in the ONDN w.1.1 strata have mode assignments.

The need to iterate is not unique to only the non-logit methods like the one used in the
Study. Each mode assignment methodology, whether it is logits or some other
methodology, is based on aggregate statistics rather than particular individuals. As a
consequence, a small percentage of individuals will have unreasonable tour modes
independent of the mode assignment methodology.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 23

2.2.2.3 Mode Assignment Using Generalized Transit Costs Only

The second assignment methodology considers only the generalized transit cost, and the
mode choice is made independent of the auto costs. The procedure is illustrated in panel
(b) of Fig 3 in Section 2.3.3 of the GMD. Since the routing in this assignment
methodology is by generalized transit, the “rational choice” selection of the Route
Planner is known. The probability of assigning auto to the tour is determined by
identifying points in the application sample that have transit costs similar to the one under
consideration. The proportion of tours with a lower auto cost is computed for these
“nearby” samples and is taken to be the probability of assigning auto to the tour.

The average or expected values of the mode splits resulting from using this procedure
multiple times on the application sample are given in Table 15. As before, this
methodology is stochastic and repeated applications of the method produce a distribution
of results. This variability and a comparison with the results for the other methodologies
is given in Section 3.

Table 15. The expected and deterministic mode split for the application data using
only generalized transit costs.

Expected Deterministic Anchor Mode
45.4 45 Walk
26.2 26 Transit
28.4 29 Auto

2.2.2.4 Mode Assignment Using Auto Costs Only

The final sampling method demonstrated here is the one that is conditioned on auto costs
only. Since the tours are not routed using generalized transit, the “rational choice”
behavior of the Route Planner is unknown. In this case, the probability of a particular
generalized transit selection—all walk legs or at least one transit leg in the Study—is
estimated from the auto costs, the “rational choice” probabilities from the Route Planner
for the application sample, or from a surrogate measure such as distance traveled. For
each tour in the forecast year, the “rational choice” grouping is selected stochastically
using these probabilities. After the grouping is chosen, the procedure is similar to the
choice selection when the transit costs alone are known, with the auto costs taking the
place of the transit costs. These procedures are documented in Section 2.3.3 of the GMD.

Routing by generalized transit is not completed for the tours in the forecast year.
Therefore, the tour must be randomly assigned either the all walk or at least one transit
leg sets, sw and st, by a mathematically justified method. If the probability of being in one
or another of these two groups is determined to be independent of the auto costs or any
surrogate of the auto costs, then the values in Table 12 can be used as estimates of the
assignment probabilities. That is, and . If, on the other hand, the
probability of being in one of these two sets is not independent of the auto costs, then a
method has to be devised that takes into account these dependencies.

51.=wp 49.=tp

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 24

This lack of independence is the case in the Study as the probabilities of having all walk
legs or having at least one transit leg are a function of the distance traveled. Figure 4
shows probability density estimates of the travel distances for the application sample for
the two sets of data—those tours that the Route Planner places in the transit set and those
in the walk set. It is apparent in this figure that the longer the distance the more likely it is
that the Route Planner assigns transit to the tour. Therefore, the probabilities that the
Route Planner assigns the transit or walk set are estimated as a function of distance.

Fig. 4. Probability density plots of the distances from the application sample for the walk
and transit application data. The black line is the density function for distance from the
walk tours. The red line is for the transit tours.

A simple logit based on the distance traveled and the Route Planner “rational choice” in
the application sample is used to estimate the probabilities of the Route Planner selection.
The estimated probability of at least one transit leg as a function of distance is:

() 1/(1 exp(.464 .0000422*distance))tP s = + −

Mode assignment is made in two steps. For each application sample, the “rational choice”
selection of the Route Planner is determined stochastically using the tour distance and the
logit given above. Depending on that choice—either auto and walk set, or the auto and
transit set—the mode choice of auto is established randomly as described in Section 3.2.2

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 25

of the GMD. The expected value of the resulting mode split for the application sample is
shown in Table 16.

Table 16. The expected and deterministic mode split for the application sample
using only auto costs and a simplified logit to estimate the “rational choice”
behavior of the Route Planner.

Expected Deterministic Anchor Mode
44.8 45 Walk
25.9 26 Transit
29.3 29 Auto

If the mode split using the auto costs only is made employing only the mode split
proportions and in place of the logit to determine the choice of using
the walk or transit calibration function, the mode assignment results are biased. The
expected mode split for this case is given in Table 17. From this table there is an apparent
bias in the number of transit and auto tours. This bias is the result of the lack of
independence between the auto costs (or travel distances) and the Route Planner’s
“rational choices”.

51.=wp 49.=tp

Table 17. The expected and deterministic mode split for the application sample
using only auto costs and the “rational choice” mode splits of the application sample
to estimate the “rational choice” behavior of the Route Planner.

Expected Deterministic Anchor Mode
44.7 45 Walk
29.4 26 Transit
25.9 29 Auto

2.2.2.5 Comparison of the Results

The procedures illustrated above are based on relatively small samples—99 samples for
the calibration set, and 100 for the application set. These small sample sizes lead to
variability in the final mode splits. The purpose of this subsection is to compare the
results of the mode splits in the calibration sample and the three applications to determine
if the differences in these results are within the variability expected for samples of size 99
and 100.

The “rational choice” mode split of the Route Planner for the calibration and application
samples are given in Table 8 and Table 12 as proportions of the sample sizes. The
numbers of walk or transit Route Planner choices for the two samples of size 99 and 100
are given in Table 18.

Table 18. Counts of the “rational choices” made by the Route Planner for the 99
calibration and 100 application samples.

Calibration Sample Application Sample “Rational Choice”
43 51 Walk
56 49 Transit

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 26

At first glance, splits in Table 18 seem to be divergent, but the contingency 2χ for these
counts is 1.14 with 1 degree of freedom and a P-Value of .19. Thus the results in Table
18 are will within the variability expected with samples of size 99 and 100.

The resulting expected mode splits for the three application methods are given in Tables
14, 15, and 16. They are recapped in Table 19.

Table 19. The expected and the deterministic mode splits using the three methods
for mode assignment.

Deterministic Using Auto
and Transit
Costs

Using
Transit
Costs Only

Using Auto
Costs Only
and the Logit

Using Auto
Costs Only
and the
“Rational
Choice”
Probabilities

Mode

45 44.8 45.4 44.8 44.7 Walk
26 26.6 25.9 25.9 29.4 Transit
29 28.6 28.4 29.3 25.9 Auto

From Table 19, all of the methods except the auto costs only using the application sample
“rational choice” probabilities, and give unbiased mode splits. .51wp = .49tp =

The variability in the applications of these methods is discussed in Section 3.3.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 27

3. SOME TOPICS OF INTEREST
The procedures for mode assignment given in this document are the result of a general
research project to understand mode choice in the context of the TRANSIMS framework.
The non-logit form of the utility functions used in the Study is itself a research project to
ascertain whether these simpler semi-parametric models can be used as mode choice
models in place of the often more complex logit models now in use. Throughout the
Study, numerous techniques were tested and some of them either failed or required slight
modifications for the mode techniques to be successful. This Section contains some
constructive information about these modifications and their effects on mode choice
procedures.

3.1 Cost Functions That Can Not Be Calibrated

The basic form of the cost function used in the Study is the result of an assessment of
those factors that influence mode choice. The first attempt at calibration did not include
the $.03 per km cost for auto tours. In Table 5, only 29 out of 1260 TAZs have nonzero
associated parking costs. If the $.03 per km driven is removed from the DollarCost
portion of the cost function, then the DollarCost for auto tours is the parking cost alone.
In the numerous drive tours where there is no parking cost, the comparison of the cost
functions for auto and generalized transit becomes a comparison of the travel times by
each mode. Since travel by auto is generally faster than by transit, auto is the preferred
mode of travel in these cases. The over abundance of preferred driving tours leads to
mode choices that can not be calibrated; that is, the transit calibration target value is not
between the two horizontal lines in Fig. 2 showing the maximum and minimum possible
proportion of transit tours.

3.2 Nonuniqueness of the Cost Function

Changing the value of α in the cost function changes the proportion of walk or transit
tours in the walk/auto or transit/auto calibration. The proportion of walks in the
calibration sample as a function of α is shown in Fig. 5. In this figure, the proportion of
walks decreases as the weight, α, on the travel time and the household income increases.
The calibration procedure is to find one value of α that places the proportion of the walk
tours in calibration. The points in Fig. 5 form a decreasing step function. From this
figure, it is apparent that multiple values of α produce the same proportion of walk tours.
The steps in this function occur as each point in the calibration sample moves from one
side of the line shown in Fig. 1 to the other as α changes. Therefore, a smoother function
may be obtained by increasing the calibration sample size.

In the Study, an appropriate value of α is obtained by using a search technique. Another
option is to compute the proportion for numerous values of α and fit a parametric
function to the resulting data. For example, a least squares fit of the data in Fig. 5 could
be made to a functional form such as:

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 28

 0

11 exp()
p β

β α
=

+

where 0β and 1β are parameters determined by the fit. The function would then be
inverted and α determined for a particular value of p.

The proportion of walk tours as a function of α in the cost function used in the Study is
non-increasing. The differences in travel times using the two modes and the differences
in the corresponding dollar costs are in the same quadrant of a plot similar to that in Fig.
1. Therefore, the particular cost function used in the Study does not exhibit non-
monotone behavior.

Fig. 5. Calibration curve of walk fraction versus the calibration parameter.

3.3 Sample Sizes, Biases and Variability

The expected values given in Section 2.2 do not address the variability inherent in the
recommended methods. The purpose of this section is to consider the variability and
biases of these methodologies. The variability, precision and biases in the three methods
for mode assignment depend on the sample sizes used in all stages of the methodologies.

In the Study, the Route Planner “rational choice” proportions varied greatly between the
calibration and application sample. This amount of variability seen there is within the

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 29

variability expected for samples of size 99 or 100. Differences this large in mode splits
between the calibrations and an application sample for the base year may be unacceptable
in actual applications. Increasing the sample sizes until the desired variability is obtained
can control the differences in the mode splits. As rule of thumb the standard deviation of

any estimated proportion is no more than 1
2 n

, where n is the sample size. If the analyst

wanted the estimated percentage of one of the mode splits to be within, say, .05 of the
true value (that is 2 standard deviations are within .05 of the true value), then the sample
size for the application and calibration samples would be n . In almost all
cases, sample sizes of 500 to 1000 should be ample to calibrate the system.

21/(.05) 400= =

In the Study, the five nearest application points were used to determine the expected
values for the mode split methodologies. As shown in Table 19, this resulted in a slight
bias away from the deterministic results for the application sample. If the procedure is
changed to include either the nearest 7 or 10 points, this bias increases. These results are
given in the Table 20.

Table 20. The changes in the expected results for the methodologies as the nearest
“number” of points are used to estimate the probabilities.

walk transit auto number application type
45.0 26.0 29.0 deterministic

44.8 25.9 29.3 5 Auto Only Using Distance Logit
43.8 27.7 28.5 7 Auto Only Using Distance Logit
44.9 30.0 25.2 10 Auto Only Using Distance Logit

44.7 29.4 25.9 5 Auto Only Using Estimated Proportions
43.8 30.6 25.6 7 Auto Only Using Estimated Proportions
44.6 32.7 22.7 10 Auto Only Using Estimated Proportions

45.4 26.2 28.4 5 Transit Only
44.4 28.0 27.6 7 Transit Only
43.8 29.1 27.1 10 Transit Only

44.8 26.6 28.6 5 Transit and Auto
44.4 28.0 27.6 7 Transit and Auto
45.0 30.0 25.0 10 Transit and Auto

In Table 20, the column “number” is the number of nearest neighbors used to estimate
the choice probabilities. The difference between the deterministic results and the
stochastic results increases as the number of nearest points increases. In the Study, using
the five nearest points produced the most reliable results.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 30

The actual number of nearest points to use in the application depends on the original
sample size. It is recommended that, in actual applications using the non-logit methods
described here, a similar experiment be performed using the calibration sample to
determine the appropriate number of nearest points to use.

In addition to the expected values of the application of the methodologies, the variability
in the methods may also be computed. The standard deviation of the application sample
mode splits for each of the methodologies and estimation number is given in Table 21.

Table 21. The standard deviations of the estimated mode splits of the application
sample.

walk transit auto number application type
4.6 4.0 2.9 5 Auto Only Using Distance Logit
4.5 4.2 2.9 7 Auto Only Using Distance Logit
4.6 4.3 3.0 10 Auto Only Using Distance Logit

4.8 4.0 3.1 5 Auto Only Using Estimated Proportions
4.8 4.1 3.0 7 Auto Only Using Estimated Proportions
4.8 4.3 3.1 10 Auto Only Using Estimated Proportions

2.0 1.6 2.6 5 Transit Only
2.3 1.7 2.8 7 Transit Only
2.5 1.7 3.0 10 Transit Only

1.5 1.3 2.0 5 Transit and Auto
1.5 1.5 2.1 7 Transit and Auto
1.5 1.8 2.4 10 Transit and Auto

The entries in Table 21 are interesting. The variability in the process decreases as more
information is used to determine the mode choice. For example, consider the walk mode
split. When only auto costs are used to determine the walk mode split, there is no
information other than auto cost or distance traveled to determine the “rational choice”
behavior of the Route Planner. As a consequence of this, the standard deviation of the
walk mode split for the 100 application samples is around 4.6. This is in contrast to the
2.0 to 2.5 standard deviation when the transit cost, and hence the ‘rational choice” of the
Route Planner, is known. The smallest variability is obtained when the tour is routed both
by auto and generalized transit where the standard deviation is 1.5.

3.4 Boarding Times for Transit

The TRANSIMS Route Planner finds the least time path through the walk and transit
network when the mode is generalized transit. When aggregated, the collection of paths
produces a model for the behavior of a transit population. The form of this model is
dependent on the transit schedules and routes, the representation of transit stops, and
input parameters that control the time a traveler must be at the transit stop before the
scheduled departure. The two configuration keys that govern this are

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 31

ROUTER_GET_ON_TRANSIT_DELAY and ROUTER_GET_OFF_TRANSIT_DELAY. The
names of these two parameters should not be taken literally. They should be viewed as
penalties in making transfers due to the inconvenience of the transfer and the uncertainty
in the transit schedules.

Setting the values of these delay times to well over one minute produces better models of
the behavior of transit travelers. That is, under these penalties, travelers are less likely to
choose routes that require multiple transfers with short legs since there is a time penalty
for each transfer. A discussion of the resulting transit behaviors and the recommended
delays may be found in the modeling document, TRANSIMS Ver. 3.0, Volume Eight.

The use of the delay parameters as penalties not only produces correct transit transfer
behavior, but also affects the mode choice calibration. In the Study, if the boarding delay
for transit is set to one minute or less for the calibration sample, the calibration between
walks and autos cannot be set. If the boarding penalty is low and there is an abundance of
transit possibilities, such as the bus mall in Portland, then the Route Planner will not
mimic the behavior of most travelers. In these cases, a short transit trip of one or two
transit stops becomes more favorable than walking between the destinations. When this
happens in the calibration stage, the Route Planner (in its “rational choice”) places too
many travelers on transit and has too few walking. In the Study, this leads to situations
where calibration of the walks is impossible.

Table 22 contains the values of Equations 14 and 15* for the calibration sample when a
small transit delay time is used for routing. Equation 14 is negative and from the GMD
negative values for these equations indicates a situation where calibration is not possible.
Examination of the form of Equation 14 in the GMD shows that it will become negative
when the proportion of Route Planner “rational choices” for one of the alternatives
becomes too small, which is the case here for the walk “rational choice”.

Table 22. Calibration target proportions for Auto with small boarding time delays.

Anchor Mode Proportion
Walk Eq. 14 = -0.39
Transit Eq. 15* =0.62

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 32

4. SUMMARY
This document demonstrates multiple methodologies for mode assignments using the
TRANSIMS framework. Mode assignment in the Study is a research project. First, the
implications of the “rational choice” behavior of the Route Planner are documented here.
This behavior requires special procedures for calibration. These procedures are given in
the GMD and their application is shown here using a small example.

In the second research effort, the use of non-logit calibration functions is demonstrated. It
is shown with a small example that simple calibration functions for small subsets of the
population may be used in place of the logit functions commonly used on larger subsets
of the populations.

For the non-logit case, three methodologies for mode assignment to the forecast year are
given. It is shown that each methodology produces an unbiased mode assignment.
However, the methodology using only the auto costs is made unbiased by estimating the
“rational choice” behavior of the Route Planner employing a simple logit function of the
distance traveled. The variability of these methodologies is shown to increase as the
amount of information used to make the mode assignment decreases.

Being a research project, numerous techniques for mode assignment were investigated
throughout the Study. Many of these failed or had to be modified to obtain unbiased
mode splits. Most notably, a transfer penalty for light rail and bus tours had to be added
to produce realistic transit behavior. This penalty is recommended for all TRANSIMS
applications. Additionally, a cost for the distance traveled had to be added to the
generalized cost function for auto tours to allow for calibration.

A set of general procedures for mode choice is given in Appendix A of this document.
The scripts and configuration files used in the Study are in Appendix B. A general set of
scripts and configuration files are in Volume Seven (Appendix), Chapter Thirteen (Mode
Feedback) in the set of Study documents

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 33

5. APPENDIX A: GENERAL SCRIPTS FOR MODE
CALIBRATION
This appendix contains a description of a general set of scripts that may be used for mode
calibration and application to a full set of tours for a forecast year. The scripts are found
in Volume Seven (Appendix), Chapter Thirteen (Mode Feedback) of the Study
documents.

5.1 Calibration Methods

The purpose of the calibration step is to determine the model parameters from the base-
year data. Only the model parameters from this procedure are retained for the forecast
year. All other calculations and data are discarded. In this methodology, the travel tours
of the population are divided into strata. Tours are stratified by the type of trip and other
characteristics that may influence mode choice, such as the primary anchor of the tour—
work, shop, or other—and the distance to transit. There are two steps to the calibration.

1) The first step is the generation of the data necessary for the calculations, called
“initialization”. This step involves determination of the base-year target values for
mode splits from a source outside of TRANSIMS, like survey data. The TRANSIMS
data necessary for calibration is generated from a random sample of tours from each
of the strata. These tours must be routed on both auto and generalized transit modes.

2) The second step is the set of calculations that determine the model parameters based
on data from the initialization step.

5.1.1 Initialization

5.1.1.1 Select Tour Types

Only the strata with home and primary anchor locations near transit, ONDN, is described
in this document. Further stratification of the tours in the ONDN group is by work and
non-work tours, home urbanization, and primary anchor urbanization.

All of the analysis for mode feedback is done with tour-based databases. Since the
Activity Regenerator and the Route Planner both produce output by household, every
database is filtered so that only ONDN tours are included. Further, since each tour must
be considered independent of all other traveler’s tours, each tour modification is
considered separately. That is, the entire procedure is done once for each tour, with all
other tours of that traveler in their original state each time. For a traveler with five tours
selected for testing, the entire initialization procedure is done five times. When the data
for all selected traveler-tours is available, the databases are merged so that all selected
tours are considered together.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 34

MergeCollator ItdbByTour FilterONDNAS7 AS7.ONDN.tdb

Fig. 6. Creation of the AS7-ONDN tour database.

Fig. 6 shows the creation of the initial ONDN tour-based database from the AS7 set of
activities. All of the flowcharts shown as figures in this section present the progress of
files (black) and scripts and programs (blue) run as part of mode feedback. Here, the
TRANSIMS Collator is used to collate the AS7 activity data with the network and
population data. This process is run in parallel by a RunCollator script. The subsequent
output is merged into a single database. Merging is accomplished by concatenating all
other databases to the first file, excluding their headers. This iteration database has one
entry for each activity in AS7. It is used as input to a perl script that condenses the
information into a tour-based format described in Section 3.1.3. The tour database
contains one entry for every tour in AS7, so it is then filtered through a second perl script
that removes all entries not in the ONDN group. Also in this script, all travelers below the
age of 16 are removed. The result is the initial ONDN tour database based on AS7
activities.

The resulting ONDN database is stratified into 18 separate strata. These strata were
determined and subdivided again according to transit type “rational choice” as
determined by the Route Planner. Each of these 54 groups will be calibrated
independently. This is done most efficiently in the procedure described in Section 5.1.1.3.

5.1.1.2 Compute Targets

The base-year target mode splits are calculated using only survey data. These numbers
are employed in Equations 14, 15, and 16 of Section 2 to determine the calibration.

The starting point is the set of all trips from the two-day activity survey, having 73,265
entries. The data is not adjusted to account for sampling bias in the survey. Excluding any
traveler under the age of 16, the set reduces to 59,756 trips. Excluding all trips that
belong to a subtour, there are 56,886 remaining trips. All trips on any tour that have any
leg done as an auto passenger or as a driver with a passenger are also removed, reducing
the set to 28,171 trips.

The set of trips is then converted to a set of tours. All activities are classified as work or
non-work activities. If there are any work activities in a tour, only the work activity with
the longest duration in that tour is kept in the data set. If there are no work activities, only
the activity in the tour with the longest duration is kept in the data set. The duration is the
time spent at a single activity location. The resulting database of trips representing tours
has 11,641 entries, although Table 23 reports only 9,780.

Each tour is classified according to the stratification criteria described in Section 3.1. If
the distance of the home location to transit is less that 1000 meters, the tour is said to be
“origin near transit”. The primary anchor location is selected in the above procedure. If
this activity location is within 1000 meters of any transit stop, the tour is said to be
“destination near transit”. The final two classifications refer to the urbanization value of

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 35

the home location and of the primary anchor location. The possible values are
“suburban”, “urban”, or “very urban”.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 36

Table 23. Calibration target mode splits determined from the survey.
work/non-work home urbanization work urbanization transit distance Walk Bike Transit Park &

Ride
Drive
Alone

Total

work very-urban very-urban ONDN 59 2 41 0 51 153
work very-urban very-urban OFDN 0 0 0 0 0 0
work very-urban very-urban DF 0 0 0 0 0 0
work very-urban urban ONDN 14 3 2 0 39 58
work very-urban urban OFDN 0 0 0 0 0 0
work very-urban urban DF 0 0 0 0 0 0
work very-urban suburban ONDN 0 2 9 1 52 64
work very-urban suburban OFDN 0 0 0 0 0 0
work very-urban suburban DF 0 0 0 0 0 0
work urban very-urban ONDN 44 24 101 6 242 417
work urban very-urban OFDN 0 0 0 0 0 0
work urban very-urban DF 0 0 0 0 0 0
work urban urban ONDN 23 13 31 0 256 323
work urban urban OFDN 0 0 0 0 0 0
work urban urban DF 0 0 0 0 0 0
work urban suburban ONDN 7 2 21 0 430 460
work urban suburban OFDN 0 0 0 0 0 0
work urban suburban DF 1 2 0 0 41 44
work suburban very-urban ONDN 33 8 60 140 414 655
work suburban very-urban OFDN 1 0 2 25 54 82
work suburban very-urban DF 0 0 0 0 0 0
work suburban urban ONDN 10 4 12 7 372 405
work suburban urban OFDN 1 0 0 0 59 60
work suburban urban DF 0 0 0 0 0 0
work suburban suburban ONDN 65 19 43 12 2225 2364
work suburban suburban OFDN 4 0 0 1 552 557
work suburban suburban DF 17 3 0 0 380 400
non-work very-urban very-urban ONDN 109 4 12 1 29 155
non-work very-urban very-urban OFDN 0 0 0 0 0 0
non-work very-urban very-urban DF 0 0 0 0 0 0
non-work very-urban urban ONDN 13 5 7 0 26 51
non-work very-urban urban OFDN 0 0 0 0 0 0
non-work very-urban urban DF 0 0 0 0 0 0
non-work very-urban suburban ONDN 4 0 8 0 13 25
non-work very-urban suburban OFDN 0 0 0 0 0 0
non-work very-urban suburban DF 0 0 1 0 1 2
non-work urban very-urban ONDN 29 5 26 1 94 155
non-work urban very-urban OFDN 0 0 0 0 0 0
non-work urban very-urban DF 0 0 0 0 0 0
non-work urban urban ONDN 138 16 21 0 295 470
non-work urban urban OFDN 0 0 0 0 0 0
non-work urban urban DF 0 0 0 0 0 0
non-work urban suburban ONDN 16 2 9 0 170 197
non-work urban suburban OFDN 0 0 0 0 0 0
non-work urban suburban DF 1 0 0 0 11 12
non-work suburban very-urban ONDN 11 0 12 8 73 104
non-work suburban very-urban OFDN 1 0 0 1 17 19
non-work suburban very-urban DF 0 0 0 0 0 0
non-work suburban urban ONDN 14 1 4 0 200 219
non-work suburban urban OFDN 0 0 0 0 14 14
non-work suburban urban DF 0 0 0 0 0 0
non-work suburban suburban ONDN 212 14 38 4 1527 1795
non-work suburban suburban OFDN 1 0 0 0 244 245
non-work suburban suburban DF 31 4 1 0 239 275
 Total 828 129 460 207 7881 9780

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 37

Table 23 shows the result of this analysis. The categories described above match those
described in Section 3.1 and are used in the Study as calibration targets. A more careful
generation of targets would account for the weighting of households to match the actual
demographics of the population as determined from the census,.

Note that there are 25 classifications with no data, and 29 with data. It is assumed that the
groups with no data are unpopulated. All of the ONDN groups have data, so this is not an
issue in the calibration described in Section 5.1.2.2. However, there are several bins in
ONDN with very little data, making the target mode split questionable. This and related
topics will be discussed in the summary at the end of this report.

5.1.1.3 Route Samples

Part of the initialization step is to obtain the subset of TRANSIMS data intended for
calibration and modeling. The first thing is that all walk and rail modes are converted to
general transit, and the activities are regenerated with these modes. By so doing, all trips
that are not bike, school bus, or magic moves become either auto or general transit, the
starting point for mode feedback (mode X, as described in Section 2).

ActivityRegenerator partial.A-init
AS7

init.fdbk

UseGenTrans
init.fdbk

init.HH
AS7.ONDN.tdb

MergeActivities A-init
partial.A-init

AS7

Fig. 7. Conversion of all walk and rail trips to general transit mode.

In the Study all walk and rail trips are converted to general transit. Fig. 7 describes the
simple procedure. The ONDN AS7 tour database created in the previous section is used
as input to the UseGenTrans perl script. For each tour in the database, a feedback
command is created that converts all walk or rail modes in the tour into general transit.
The activity feedback file is called init.fdbk. Every household with an entry in init.fdbk
also has an entry in the household file init.HH, although this is not used. Since almost all
households have at least one walk trip, init.HH contains almost all households.

The partial activities are then merged with the original set to recover any households that
had no walk or rail trips. The result, A-init, includes all activities for every household.
The MergeActivities step first creates activity household-indexes (if they are not already
present) using the TRANSIMS program IndexActivityFile, then combines them using the
MergeIndices program. Finally, IndexDefrag creates the defragmented activity file A-init.
This activity file contains no walk, bus, or rail trips, only general transit.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 38

SplitByTour init. dbinit.tdb

MergeCollator ItdbByTour FilterA-init init.tdb

SelectRandom

k.t

k
.k.f

.k.f

k.H
k.t

.k
k

Fig. 8. Create initial tour database, select a subset of tours, then split into files with all
first tours in k=1, all second tours in k=3, etc.

Because all mode feedback is done using tours, a tour database must be created from the
initial activity set A-init. Fig. 8 describes this process. The first line of the figure is
similar to Fig. 6: the A-init activities are collated with the network and population data in
a set of independent parallel processes, their output is merged, the resulting file is input to
ItdbByTour, and the result has all non-ONDN tours removed to form the final tour
database init.tdb.

Since it is not necessary to test all tours to calibrate the model, only a fraction of the tours
is selected for analysis. The size of this fraction is such that the least populated stratum
will have at least 100 data points. The Stratify script used in Fig. 16 has an alternate mode
of operation that does not stratify a database, but merely counts the occupancy of each
bin. This should be used on init.tdb to determine the sampling fraction, but is not
included in Fig. 8. Using the sampling fraction and init.tdb, a subset of tours is selected.
However, as mentioned above, routing of different tours for the same traveler is done in
separate runs of the Route Planner. The sampled set of tours is divided into several files,
one for each tour number. The init.1.tdb file contains all selected tours that were the first
tour of their respective travelers. The files, init.k.tdb are created for all necessary values
of k where the red k is used to denote the tour number. The files are merged together at
the end of the procedure. This merge is described in Fig. 13. All of the procedures from
here to the last merge must be executed once for each of the values of the red k, from one
through the maximum tour number.

ActivityRegenerator partial.A-MF0.
A-init

MF0 dbk

ReModeTrans
MF0 dbk

MF0. H
init. db

Merge A-MF0
partial.A-MF0.

A-init

Fig. 9. Convert all selected tours to general transit mode.

The next step in the procedure is to route all selected tours on the general transit mode,
denoted by T in preceding sections. This first involves generating a new activity set, as
shown in Fig. 9. A new activity sets is generated for each value of k.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 39

For each value of k, the database of selected tours, init.k.tdb, is used with the
ReModeTrans script to create a set of feedback commands and household files similar to
what was done with UseGenTrans in Fig. 7. For each auto mode tour in the input
database, ReModeTrans creates a feedback command to convert the tour into transit
mode tour. The feedback command issued is one of the M commands with optional
arguments, described in the documentation for the Activity Generator. It converts any
auto trip in the tour into a general transit trip, but leaves all other modes unchanged. The
activity feedback file is called MF0.k.fdbk, for the zeroth mode feedback step. Each entry
in the feedback file has a corresponding entry in the router feedback household file,
MF0.k.HH.

The activity feedback file is used with the initial activities in the Activity Regenerator to
create a partial activity file, partial.A-MF0.k, where all of the feedback commands have
been executed. The partial activities are finally merged with the initial activities to form
an activity set that is identical to A-init except that all auto mode tours are converted to
transit mode tours. The resulting activity set is called A-MF0.k. Note again that each step
is done for each value of k.

IndexRouter DefragmentMerge
A-MF0

MF0 H
R-MF0

.k

.k.H
.k

.k.t
.k

.k

Fig. 10. Route selected tours on general transit mode.

The routing of the transit mode activities is shown in Fig. 10. The A-MF0.k activities are
routed using the Route Planner in distributed-parallel fashion. The routing is carried out
using a script called RunRouter that spawns a specified number of distributed parallel
jobs of the TRANSIMS Route Planner. The resulting independent output files are merged
using the PlanFilter program that operates on the plan indexes. The resulting combined
index file is defragmented with IndexDefrag. The old indexes are removed, and the
combined file is re-indexed for more efficient access. The result is a combined plan file
called R-MF0.k. Note that the plan index is only one file, and its base-name is given as
the argument for the plan file in the configuration file for the Collator. However, the
“file” itself may be made up of many smaller fragment plan files. This is an important
point that is explained in more detail in the Report on Route feedback. Note also that this
must be done for each value of k.

MergeCollator ItdbByTour Filter MF0 db
A-MF0

R-MF0

Fig. 11. Create tour database for transit mode tours.

With the activities routed, all data is available to create a new tour database with travel
times taken from the routes. This is shown in Fig. 11. The procedure is the same as that
described for Fig. 6, except that the file names as well as the results are different. By
including the route table in the input, route times and modes are included in the database.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 40

The resulting database of tours routed on transit is MF0.k.tdb, where this procedure is
done once for each value of k.

IndexRouter DefragmentMerge
A-MF1

MF1 H
R-MF1

MergeCollator ItdbByTour Filter MF1 db
A-MF1

R-MF1

ActivityRegenerator partial.A-MF1.
A-init

MF1 fdbk

ReModeAuto
MF1 fdbk

MF1 H
init. db

Merge A-MF1
partial.A-MF1.

A-init

.k

.k.H
.k

.k.t
.k

.k

k
.k.

.k.

.k.H
k.t

.k
k

.k.t
k.t

.k.t
k.t

Fig. 12. Route selected tours on auto mode and create tour database.

The same method that created the transit mode database is used to create the auto mode
database in Fig. 12. Starting with the initial tour database, init.k.tdb, feedback files are
generated and used to change all transit mode tours to auto mode tours. The activities are
routed, and both routes and activities are used to create a tour-based iteration database
called MF1.k.tdb. As with all steps since Fig. 8, this is done once for each value of k.

MergeTours MF0.tdb
MF0 db
init. db

MergeTours MF1.tdb
MF1 db
init. db

Fig. 13. Merge independent-tour databases into single ONDN databases.

The initial databases of tours selected for testing, init.k.tdb, contain entries only for the
selected tours, and only one entry per traveler per file. On the other hand, the re-moded
databases contain entries for all tours of all travelers in all households where any tour was
selected. The same household may appear in databases with different values of k. It is,
therefore, necessary to sort through all of these databases and collect only the tours that
are being tested in each. This is done by the MergeTours script that takes all databases
containing tours to be merged and uses the init.k.tdb files as the key to knowing which
tours come from which files. The result is a file with entries for every tour tested,
including the tested value of travel times and mode strings. As shown in Fig. 13, this is

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 41

done once for the transit tours and again for the auto mode tours, creating two tour-based
databases as the output from the initialization step, MF0.tdb and MF1.tdb.

5.1.2 Calibration

This step determines the calibration parameters for the mode choice model. Although
there are a large number of intermediate files, only the calibrated model parameters are
retained for the forecast year.

5.1.2.1 Estimate Route Planner Probabilities

Using the perl script CombineDB, the two databases created in the last step of
initialization are combined into a single database having all demographic, home, and
primary anchor location information, and mode-independent tour data. Also included are
the tour mode and travel time for each of the modes in MF1.tdb and MF0.tdb, which have
auto in one and general transit in the other. This is shown graphically in Fig. 14.

CombineDB combined.tdb
MF1.tdb

MF0.tdb

Fig. 14. Combine one-mode databases to get single two-mode database. This database
will be used here and again in Section 5.1.2.2.

The combined database contains all of the information necessary for calibration except
the mode-split targets, which are already known. Preliminary to the iterative fit in the
calibration step, a simple model of the Route Planner’s rational choice in the base-year
must be constructed. The model chosen for the case study is a constant probability,
independent of all demographic and other variables.

CountModescombined.tdb

w
Rp
l
Rp
b
Rp

Fig. 15. Calculate Route Planner rational-choice probabilities.

The CountModes script calculates the fraction of selected tours in the combined database
that have chosen each of the three subsets—walk, bus, or light rail—of the general transit
mode when using the general transit mode. These numbers are the simplest estimates of
the values and are independent of all demographic information. k

Rp

5.1.2.2 Compute Model Parameter

With the ac, wc, bc, and lc parameters computed in Section 5.1.1.2, and the functions
determined in Section 5.1.2.1, the target mode splits can be calibrated by adjusting the

k
Rp

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 42

single model parameters α, in each stratum to match the targets computed from
Equations 14-16 in Section 2. This is done by first dividing the combined 2-mode tour
database, combined.tdb, into separate files for each transit mode of each stratum (that is,
one file for every calibration parameter). This is shown in Fig. 16.

SplitByModecombined.tdb
combined.w.tdb
combined.l.tdb
combined.b.tdb

combined.w.tdb

combined.l.tdb

combined.b.tdb

Stratify

Stratify

Stratify

combined.w db

combined.l db

combined.b db

.s.t

.s.t

.s.t

Fig. 16. Split databases by transit choice; stratify each.

The combined database is split into three separate files: one for each of the transit modes
the Route Planner may choose when given the general transit mode in the activities. Each
of these databases is then divided into 18 separate files, one for each of the strata used in
ONDN. The stratum is denoted in the figure by the red s, which is a three-character
string. The first character is either w or n, corresponding to work or non-work tours. The
second character is a number from one to three corresponding to the home urbanization
value (1 = very-urban, 2 = urban, 3 = suburban). The third character is the primary anchor
urbanization value. Thus, s = w11 would be the stratum with only work tours where the
home location is in a very urban area and the primary anchor location is in a very urban
area.

With the combined database split into the 54 independently calibrated strata, calibration
is straightforward. The TestAlpha script counts the modes used in each tour resulting
from a given value of α, and is used inside an iterative fitting procedure to reach the
target. In the Study, a manual fit is used, where the analyst chooses the values of α to be
tested and decides when the target mode split has been achieved. A simple bisection
method works well. Regardless of the method of fitting, different values of α are tested
until the desired mode split is reached.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 43

combined.w db TestAlpha s
wα

combined.l db TestAlpha

combined.b db TestAlpha

l
wα

b
wα

.s.t

.s.t

.s.t

.k.t

Fig. 17. Fit calibration parameters to data.

A typical relationship between the mode split and the calibration parameter α is shown in
the results section. After all strata are fit, there are 18 triples of calibration parameters
describing the mode choice model.

5.2 Application to Forecast Year

Application to the forecast year requires that the forecast year activities be moded on
transit so that the Route Planner “rational choice” is known. A subset of these tours is
routed with an auto mode to determine the mode-choice preference distribution for each
stratum using the model parameters calibrated in the base year. The resulting forecast-
year preference distributions are used to select a mode for every tour. Afterwards, a
similar procedure is used to correct bad choices, while preserving the number of tours
using each mode.

5.2.1 Initial Application

The initial application produces a set of forecast-year activities that have modes chosen
according to the model calibrated in Section 5.1.

5.2.1.1 Route on Transit

It is assumed that the starting point is a set of forecast-year activities where all walk or
rail modes are changed to general transit, as was done for AS7 to create the A-init activity
set. This initial set of forecast-year activities is called A-FY.

MergeCollator ItdbByTour FilterA-FY FY0.tdb

SplitByTour FY0 dbFY0.tdb

Fig. 18. Create initial forecast year database, then split into files with all first tours in
k=1, all second tours in k-3, etc.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 44

As in calibration, all mode feedback scripts operate on tour-based databases. The A-FY
activities are used to create the initial forecast-year tour database FY0.tdb, as shown in
Fig. 18. This is the same set of scripts and programs used to create tour databases from
activities used in every earlier instance of this report. Since all tours must be routed on
transit mode, there will be multiple tours from a single traveler, and the database must be
split into separate databases for each tour. This is again done using the SplitByTour script,
which creates databases FY0.k.tdb. The red k in Fig. 18 designates the tour number and
can be any integer up to the maximum number of tours for any traveler.

ActivityRegenerator A-FY1
A-FY

FY1. fdbk

ReModeTrans
FY1 fdbk

FY1. H
FY0 db

.k

k.

.k.

k.H
.k.t

.k

.k.H
.k

.k.t
.k

.k

Fig. 19. Convert all selected tours to general transit mode.

The entire initial application stage of mode feedback is done once for each value of k, and
merged together at the end. Fig. 19 shows the process of changing of activity modes to
transit. For each k, the tour database is run through the ReModeTrans script, which
creates a feedback command that re-modes all auto trips to transit for every tour in the
database. The Activity Regenerator feedback command file is called FY1.k.fdbk, and the
corresponding household file is FY1.k.HH. That feedback command file is used with the
initial forecast-year activities in the Activity Regenerator to create a partial set of
activities—all activities for every household in FY1.k.HH, with all mode changes in the
feedback command file. The partial activity file A-FY1.k is not merged into the full
activity file because every tour is considered for one value of k.

IndexRouter DefragmentMerge
A-FY1

FY1 H
R-FY1

Fig. 20. Route selected tours on general transit mode.

The routing of the transit mode tours is shown in Fig. 20. The procedure is the same as
that described in Section 5.1.1.3. The result is a corresponding set of routes labeled R-
FY1.k.

MergeCollator ItdbByTour Filter FY1 db
A-FY1

R-FY1

Fig. 21. Create tour database for transit mode tours.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 45

The activities and routes for each k are combined into a tour database as in Fig. 22. The
result is a set of databases called FY1.k.tdb.

MergeTours FY1.tdb
FY1 db
FY0 db

.k.t

.k.t

.k.t

Fig. 22. Merge independent-tour databases into single ONDN databases.

The final step in preparing the transit mode data for every tour in ONDN is to merge the
databases for every value of k. The FY0.k.tdb is used as the key that determines from
which FY1.k.tdb each tour should be drawn. The result is the FY1.tdb tour database,
where every tour is on transit mode, but the time estimate for each tour was made under
the assumption that only that tour (for the given traveler) was re-moded onto transit. That
is, for a traveler who had five auto tours, the first tour’s transit time is determined under
the assumption that the second through fifth tours were still using auto; the second tour’s
transit time assumes tours 1 and 3-5 were auto, etc.

5.2.1.2 Route Sample on Auto

It is not necessary to test every tour on both auto and transit, only a subset that is
sufficiently large for good statistics in estimating modes (Section 5.2.1.3).

SplitByTour FY2 dbFY0.tdb SelectRandom

Fig. 23. Select a subset of tours, then split into files with all first tours in k=1, all second
tours in k=3, etc.

Before splitting the FY0.tdb initial forecast year tour database by tour number, a subset is
drawn using SelectRandom and a specified fraction, shown in Fig. 23. The chosen
fraction is large enough that all strata will have sufficient samples. Note that it would be
more efficient to stratify and then sample, thus ensuring good statistics, but the approach
described here and in Section 5.1.1.1 is simpler to explain. The resulting databases, split
by the tour number, are FY2.k.tdb. This set of files is actually a subset of the FY0.k.tdb
files, and the sample could have been taken from those instead, eliminating the
SplitByTour step above.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 46

IndexRouter DefragmentMerge
A-FY3

FY3 H
R-FY3

MergeCollator ItdbByTour Filter FY3 db
A-FY3

R-FY3

ActivityRegenerator A-FY3
A-FY

FY3. dbk

ReModeAuto
FY3. fdbk

FY3 H
FY2 db

.k

.k.H
.k

.k.t
.k

.k

.k
k.f

k.

.k.H
.k.t

.k.t

.k.t

Fig. 24. Route selected tours on auto mode and create tour database.

Fig. 24 illustrates the generation of auto mode data for the mode preference distribution.
Since most of the tours will already be on auto mode in the original forecast year
activities, this step could be done more efficiently by not re-moding those tours already
on auto. However, the staff time necessary to do that and to check that it is working, far
outweighs the time it takes to simply re-calculate the auto mode activities. Starting from
the tour database split by tour number, FY2.k.tdb, feedback commands are created to re-
mode every tour in the database onto auto. These are used with the original forecast year
activities to create the re-moded activities A-FY3.k. The new activities are routed
(R-FY3.k), and the activities and routes are used to create a new tour database, FY3.tdb.

MergeTours FY3.tdb
FY3 db
FY2 db

Fig. 25. Merge independent-tour databases into single ONDN databases.

Finally, the auto mode tour databases (FY3.k.tdb) are used with the databases that
designate the selected activities (FY2.k.tdb) to combine the tour number files into a single
database having all selected auto mode tours.

5.2.1.3 Compute New Modes

The transit mode and auto mode tour databases are combined to form a single database
having information on both auto and transit modes for each of the tours selected for
testing. Costs are calculated using the model parameters calibrated in the base year. The
distribution of 2-mode costs is used to determine (probabilistically) the mode for each
tour using only the transit cost for that tour. The result is a set of feedback commands.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 47

CombineDB FY-combined. db
FY1.tdb

FY3.tdb
Stratify

FY1 dbFY1.tdb Stratify

s.t

.s.t

.s.t

s.t s.c

.s.cdb

s.cdb

.s.cdb .s.fdb

s.HH

Fig. 26. Combine one-mode databases to get single two-mode database; stratify.

Fig. 26 shows the combination of the two 1-mode databases into a database having
information on both modes for each tested tour. The result is stratified according to the
method described in Section 5.1.2.2, creating the 18 FY-combined.s.tdb files, where the
red s represents the 18 strata. The transit mode database is also split according to the
stratification specification, resulting in the 18 FY1.s.tdb files.

CalcModeCosts

FY1 db

FY-combined. db FY-combined. db

CalcModeCosts FY1

Fig. 27. Calculate tour cost using parameters from Section 5.1.2.2.

For each stratum, the transit mode tour database FY1.s.tdb is used with the model
parameters for that stratum (s) to create the respective table of tour costs, FY1.s.cdb.
Since the database is not split according to transit modes (walk, rail, or bus), the
CalcModeCosts script requires that all three model parameters for that stratum be given
as arguments. Then, if the transit mode is walk, the walk α for that stratum is used, etc.
The same is done for the combined database FY-combined.s.tdb, creating a two-cost table
(FY-combined.s.cdb) for each stratum.

AssignMode
FY1.

Y-combined FY4 k

FY4.

Fig. 28. Assign new modes.

Using the FY-combined.s.cdb file as the distribution of costs for each of the three transit
modes, the AssignMode program examines each tour in the FY1.s.cdb database and
chooses a new mode. If the transit mode is walk, then the distribution for walk will be
used, etc. Output is a feedback command for every tour in the transit database specifying
a mode and a corresponding household file.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 48

(concatenate/uniq)

FY4 fdbk

FY4 H

(concatenate/sort) FY4.fdbk

FY4.HH

.s.

.s.H

Fig. 29. Combine feedback files.

Since each tour is in only one stratum, the tours in the 18 feedback files are independent.
There is no header in these files, so the combined file FY4.fdbk is created by
concatenating all of the files and sorting by traveler and tour. The household file must
also be “uniqued” after concatenation so that each household appears only once. The
result is the complete set of feedback commands for the initial run of mode feedback.

5.2.1.4 Route Chosen Modes

The modes computed in the previous section are used in the Activity Regenerator with
the original forecast-year activities to create the initial set of activities with modes
determined according to the designated mode-choice model. As shown in Fig. 30, the
resulting activity file is labeled A-FY4. This file has all activities for every household
included in the feedback file.

ActivityRegenerator A-FY4
A-FY

FY4.fdbk

Fig. 30. Convert all selected tours to general transit mode.

The final step to application of the mode choice model is routing the tours on the selected
modes, as shown in Fig. 31.

IndexRouter DefragmentMerge
A-FY4

FY4.HH
R-FY4

Fig. 31. Route all ONDN tours on chosen mode.

The router household file contains entries for every household in ONDN. The resulting
route file includes all routes for ONDN. If no iteration is necessary, then R-FY4 are the
routes for the final set of mode choices for every tour in ONDN.

5.2.2 Iteration

It is unlikely that there are no problems in R-FY4, so iteration of the mode choice
methodology is required. The first step is identifying all of the problems, and the second
is fixing them.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 49

5.2.2.1 Initial Evaluation & Correction

Evaluation is a simple process. The cost for every tour is calculated, and the number of
transfers in every transit tour is calculated. Any rule could be used to declare a tour
infeasible. In the Study, an infeasible transit tour is any transit tour lasting longer than 24
hours or having more than three transit transfers on any trip within the tour. An infeasible
auto trip is any auto tour lasting more than 24 hours.

The first step in the process is the creation of the tour database. The information on
infeasible mode selections comes from the actual mode choice in R-FY4. The creation of
the tour database FY4.tdb is shown in Fig. 32.

MergeCollator ItdbByTour Filter FY4.tdb
A-FY4

R-FY4

Fig. 32. Create tour database for all ONDN tours.

However, when a tour is switched from auto to transit to account for the infeasible transit
tours, only those tours that will result in feasible transit tours should be considered as
choices. This information comes from the tour database for R-FY1 (already calculated in
FY1.tdb), which includes the transit information for all tours. All of the information
necessary for correcting bad mode choices is combined into a single database using the
CombineDB script, as shown in Fig. 33. So that the correction program does not have to
know how to group the tours, the database is stratified and split by transit mode, creating
the 3x18 Fix1.s.m.tdb databases, where s represents the three-character group identifier
and m designates the mode used when on transit (walk, rail, or bus).

CombineDB fix1 db
FY1.tdb

FY4.tdb
Stratify SplitByMode

Fig. 33. Combine one-mode databases to get two-mode databases; stratify.

.s.m.t

Since tours are considered independently in FY1 but may end up together in FY4 or in a
fixed set of modes, the FY1 database is not a good measure of a tour’s unfeasibility in
this case. For the Study , an assumption is made that these compositions do not result in
problems that cannot be corrected through the random sampling of the correction process.
That is, their numbers are few.

With each stratum considered independently, the mode split is preserved within a stratum
as well as overall. The combined database contains information about the mode chosen
and information about transit modes. However, if a tour is by transit, there is no
information about auto mode for that tour. It is assumed that there will be few infeasible
auto tours. In the unlikely event that one does occur, almost any other tour could be
switched to auto to correct for it.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 50

Fix1. db CalcModeCosts Fix1

s.m.t .s.m.cdb

s.m.cdb
s.m.

s.m.H

s.m.

.s.m.H

Fig. 34. Calculate tour costs using parameters from Section 5.1.2.2.

Costs are calculated from the combined tour database using the CalcModeCosts script.
The resulting cost databases (Fix1.s.cdb) are used in the program that makes the
corrections while preserving mode split. Each infeasible tour is re-moded. If it was an
auto tour, then it becomes general transit, and if transit then auto. All changes are
counted, and the same number of tours is changed to the other mode, so that the net count
of tour modes remains unchanged. The output is a set of feedback commands to
implement these changes.

FixModesFix1.
Fix1. fdbk

Fix1. H

Fig. 35. Fix infeasible modes.

The feedback files are combined, so that the Activity Regenerator and the Route Planner
may apply all changes to every household at once. This is the same as was done to create
FY4, and is shown in Fig. 36.

(concatenate/uniq)

Fix1. fdbk

Fix1 H

(concatenate/sort) Fix1.fdbk

Fix1.HH

Fig. 36. Combine feedback files.

The final step to correction is running the Activity Generator and Route Planner to create
a new set of forecast year activities and routes. There is now an additional merging step.
The changes specified in the “fix” feedback commands should be much fewer than the
total number of tours. It is, therefore, more efficient to regenerate and route only those
households having changes, and then merge them together with the unchanged
households. This is done using the MergeIndices tool for the activities and PlanFilter for
the routes. The merged indexes are then defragmented and re-indexed. The result is a
single complete set of activities and routes for all households having any ONDN tours,
A-Fix1 and R-Fix1.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 51

IndexRouter DefragmentMerge
partial.A-Fix1

Fix1.HH
partial.R-Fix1

ActivityRegenerator partial.A-Fix1
A-FY4

Fix1.fdbk

Merge

Merge

partial.A-Fix1

A-FY4

R-Fix1
R-FY4

A-Fix1

partial.R-Fix1

Fig. 37. Regenerated and route all corrected tours.

If the routes in R-Fix1 have no infeasible tours, they can be merged with those produced
by routing all household not having ONDN tours to produce the complete case study set
of routes.

5.2.2.2 Continued Correction

The process described in Section 5.2.2.1 may be repeated indefinitely by simply changing
the file names. Fig. 38 shows the procedure for the next iteration.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 52

MergeCollator ItdbByTour Filter Fix1.tdb
A-Fix1

R-Fix1

CombineDB Fix2. db
FY1.tdb

Fix1.tdb
Stratify

s.m.t

.s.m.t s.m.c

.s.m.cdb
s.m.

s.m.H

.s.m.f

.s.m.H

Fix2 db CalcModeCosts Fix2. db

FixModesFix2
Fix2. fdbk

Fix2. H

(concatenate/uniq)

Fix2 dbk

Fix2 H

(concatenate/sort) Fix2.fdbk

Fix2.HH

IndexRouter DefragmentMerge
partial.A-Fix2

Fix2.HH
partial.R-Fix2

ActivityRegenerator partial.A-Fix2
A-Fix2

Fix2.fdbk

Merge

Merge

partial.A-Fix2

A-Fix2

R-Fix2
R-Fix2

A-Fix2

partial.R-Fix2

Fig. 38. The second correction iteration.

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 53

6. APPENDIX B: SCRIPTS AND CONFIGURATION FILES

6.1 Configuration Files

6.1.1 ReModeAuto-A.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

recent corrections:

ACT_TRAVEL_TIMES_FILE $TRANSIMS_ROOT/activity/traveltime_050101
ACT_TRAVEL_TIME_FUNCTION_MODES 1;2;3;4;5;6;7

ACT_SURVEY_ACTIVITY_FILE $TRANSIMS_ROOT/data/survey_activities
ACT_SURVEY_WEIGHTS_FILE $TRANSIMS_ROOT/data/survey_weights_25
#ACT_TRAVEL_TIME_INTERVALS_FILE $TRANSIMS_ROOT/activity/time_intervals

LOG ACT 1

configuration file keys for ONDN activity feedback run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.act
ACT_FEEDBACK_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/auto.fdbk

ACT_PARTIAL_OUTPUT $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/auto.act
ACT_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/auto.ActivityRegenerator.problems
ACT_LOG_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/auto.ActivityRegenerator.log

rockhopper changes:

24 hours
ROUTER_MAX_LEG_LENGTH 86400

used for park and ride
ROUTER_MAX_NODES_EXAMINED 5000000

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 54

6.1.2 ReModeTrans-A.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

recent corrections:

ACT_TRAVEL_TIMES_FILE $TRANSIMS_ROOT/activity/traveltime_050101
ACT_TRAVEL_TIME_FUNCTION_MODES 1;2;3;4;5;6;7

ACT_SURVEY_ACTIVITY_FILE $TRANSIMS_ROOT/data/survey_activities
ACT_SURVEY_WEIGHTS_FILE $TRANSIMS_ROOT/data/survey_weights_25
#ACT_TRAVEL_TIME_INTERVALS_FILE $TRANSIMS_ROOT/activity/time_intervals

LOG_ACT 1

configuration file keys for ONDN activity feedback run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/no-subtours.act
ACT_FEEDBACK_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.fdbk

ACT_PARTIAL_OUTPUT $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.act
ACT_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.ActivityRegenerator.problems
ACT_LOG_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.ActivityRegenerator.log

rockhopper changes:

24 hours
ROUTER_MAX_LEG_LENGTH 86400

used for park and ride
ROUTER_MAX_NODES_EXAMINED 5000000

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 55

6.1.3 RemoveSubtours-A.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

recent corrections:

ACT_TRAVEL_TIMES_FILE $TRANSIMS_ROOT/activity/traveltime_050101
ACT_TRAVEL_TIME_FUNCTION_MODES 1;2;3;4;5;6;7

ACT_SURVEY_ACTIVITY_FILE $TRANSIMS_ROOT/data/survey_activities
ACT_SURVEY_WEIGHTS_FILE $TRANSIMS_ROOT/data/survey_weights_25
#ACT_TRAVEL_TIME_INTERVALS_FILE $TRANSIMS_ROOT/activity/time_intervals

LOG_ACT 1

configuration file keys for ONDN activity feedback run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/sample4.act
ACT_FEEDBACK_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/no-subtours.fdbk

ACT_PARTIAL_OUTPUT $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/no-subtours.partial-act
ACT_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/no-subtours.ActivityRegenerator.problems
ACT_LOG_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/no-subtours.ActivityRegenerator.log

rockhopper changes:

24 hours
ROUTER_MAX_LEG_LENGTH 86400

used for park and ride
ROUTER_MAX_NODES_EXAMINED 5000000

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

###################################

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 56

6.1.4 final2-A.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

recent corrections:

ACT_TRAVEL_TIMES_FILE $TRANSIMS_ROOT/activity/traveltime_050101
ACT_TRAVEL_TIME_FUNCTION_MODES 1;2;3;4;5;6;7

ACT_SURVEY_ACTIVITY_FILE $TRANSIMS_ROOT/data/survey_activities
ACT_SURVEY_WEIGHTS_FILE $TRANSIMS_ROOT/data/survey_weights_25
#ACT_TRAVEL_TIME_INTERVALS_FILE $TRANSIMS_ROOT/activity/time_intervals

LOG_ACT 1

configuration file keys for ONDN activity feedback run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/application/auto.act
ACT_FEEDBACK_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final2.fdbk

ACT_PARTIAL_OUTPUT $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final2.partial-act
ACT_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final2.ActivityRegenerator.problems
ACT_LOG_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final2.ActivityRegenerator.log

rockhopper changes:

24 hours
ROUTER_MAX_LEG_LENGTH 86400

used for park and ride
ROUTER_MAX_NODES_EXAMINED 5000000

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 57

6.1.5 final1-R.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

keys for ONDN re-route run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final1.act
#ROUTER_LINK_DELAY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/summary.tim

ROUTER_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final1.Router.problems
PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final1.plans
ROUTER_COMPLETED_HOUSEHOLD_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final1.completed-HH

ROUTER_DELAY_NOISE 0.10
ROUTER_OVERDO 0.0
ROUTER_SEED 912345678

configuration file keys for better performance & results:

ROUTER_DISPLAY_PATHS 0 # excessive output = 1
ROUTER_INTERNAL_PLAN_SIZE 2000 # default = 400
ROUTER_MAX_NODES_EXAMINED 5000000 # default = 400000
ROUTER_MESSAGE_LEVEL 1 # severe=0, everything=1
ROUTER_NUMBER_THREADS 2 # per box
LOG_ROUTING 1 # for speed calc
ROUTER_MAX_LEG_LENGTH 86400 # max 24 hour legs = basically unlimited
This should limit route hopping without impacting route generation:
ROUTER_GET_ON_TRANSIT_DELAY 240
ROUTER_GET_OFF_TRANSIT_DELAY 240

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

new configuration file key from Paula:

ROUTER_MAX_TRIP_TIME 172800

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 58

6.1.6 final0-R.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

configuration file keys for ONDN re-route run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final0.act
#ROUTER_LINK_DELAY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/summary.tim

ROUTER_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final0.Router.problems
PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final0.plans
ROUTER_COMPLETED_HOUSEHOLD_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final0.completed-HH

ROUTER_DELAY_NOISE 0.10
ROUTER_OVERDO 0.0
ROUTER_SEED 912345678

configuration file keys for better performance & results:

ROUTER_DISPLAY_PATHS 0 # excessive output = 1
ROUTER_INTERNAL_PLAN_SIZE 2000 # default = 400
ROUTER_MAX_NODES_EXAMINED 5000000 # default = 400000
ROUTER_MESSAGE_LEVEL 1 # severe=0, everything=1
ROUTER_NUMBER_THREADS 2 # per box
LOG_ROUTING 1 # for speed calc
ROUTER_MAX_LEG_LENGTH 86400 # max 24 hour legs = basically unlimited
This should limit route hopping without impacting route generation:
ROUTER_GET_ON_TRANSIT_DELAY 240
ROUTER_GET_OFF_TRANSIT_DELAY 240

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

new configuration file key from Paula:

ROUTER_MAX_TRIP_TIME 172800

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 59

6.1.7 test-C.cfg

This file has Collator keys for creating an iteration database to be
converted by ItdbByTour.pl into a "by-tour" database. -JPS

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr/
#CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

NET_DIRECTORY $TRANSIMS_ROOT/network
NET_NODE_TABLE Node.tbl
NET_LINK_TABLE Link.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.tbl
NET_PARKING_TABLE Parking.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.tbl
NET_TIMING_PLAN_TABLE Timing_Plan.tbl
NET_SPEED_TABLE Speed.tbl
NET_LANE_USE_TABLE Lane_Use.tbl
NET_TRANSIT_STOP_TABLE Transit_Stop.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.tbl
NET_DETECTOR_TABLE Detector.tbl
NET_TURN_PROHIBITION_TABLE Turn_Prohibition.tbl
NET_BARRIER_TABLE Barrier.tbl
NET_ACTIVITY_LOCATION_TABLE Activity_Location.tbl
NET_PROCESS_LINK_TABLE Process_Link.tbl

ACT_HOME_ACTIVITY_TYPE 0
ACT_WORK_ACTIVITY_TYPE 1
ACT_SCHOOL_ACTIVITY_TYPE 7

ACT_ANCHOR_ACTIVITY_TYPE_1 0 # Home
ACT_ANCHOR_ACTIVITY_TYPE_2 1 # Work
ACT_ANCHOR_ACTIVITY_TYPE_3 7 # School
ACT_ANCHOR_ACTIVITY_TYPE_4 8 # College

configuration file keys for parallel runs:

#ACT_POPULATION_FILE $TRANSIMS_ROOT/population/pop_converted
ACT_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/sample4.pop

TRANSIT_ROUTE_FILE $TRANSIMS_ROOT/network/Transit_Route.tbl

#SEL_POPULATION_FILE $TRANSIMS_ROOT/population/pop_located
SEL_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/sample4.pop
VEHICLE_FILE $TRANSIMS_ROOT/vehicle/vehicles.all
SEL_PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/test.plans
SEL_ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.act
#SEL_EVENT_FILE $TRANSIMS_ROOT/output/anomaly.offplan.trv

SEL_ITDB_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/test

SEL_MESSAGE_LEVEL 0
SEL_NO_ITDB_INDEX 1

Data gathered by the Collator for feedback

Pop data
SEL_USE_RHHINC 1
SEL_USE_AGE 1

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 60

Act data
SEL_USE_START_ACT_LOCATION 1
SEL_USE_END_ACT_TYPE 1
SEL_USE_END_MODE_PREF 1
SEL_USE_END_ACT_LOCATION 1
SEL_USE_END_OTHER_PARTICIPANTS 1
SEL_USE_END_DUR_UB 1
SEL_USE_END_DUR_LB 1
SEL_USE_DRIVER_ID 1

Activity Location Table data
SEL_USE_START_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8
SEL_USE_END_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8

Route data
SEL_USE_EUCLID 1
SEL_USE_DURATION 1
SEL_USE_MODE_STRING 1

event data
#SEL_USE_OFF_PLAN 1

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 61

6.1.8 transit-C.cfg

This file has Collator keys for creating an iteration database to be
converted by ItdbByTour.pl into a "by-tour" database. -JPS

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr/
#CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

NET_DIRECTORY $TRANSIMS_ROOT/network
NET_NODE_TABLE Node.tbl
NET_LINK_TABLE Link.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.tbl
NET_PARKING_TABLE Parking.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.tbl
NET_TIMING_PLAN_TABLE Timing_Plan.tbl
NET_SPEED_TABLE Speed.tbl
NET_LANE_USE_TABLE Lane_Use.tbl
NET_TRANSIT_STOP_TABLE Transit_Stop.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.tbl
NET_DETECTOR_TABLE Detector.tbl
NET_TURN_PROHIBITION_TABLE Turn_Prohibition.tbl
NET_BARRIER_TABLE Barrier.tbl
NET_ACTIVITY_LOCATION_TABLE Activity_Location.tbl
NET_PROCESS_LINK_TABLE Process_Link.tbl

ACT_HOME_ACTIVITY_TYPE 0
ACT_WORK_ACTIVITY_TYPE 1
ACT_SCHOOL_ACTIVITY_TYPE 7

ACT_ANCHOR_ACTIVITY_TYPE_1 0 # Home
ACT_ANCHOR_ACTIVITY_TYPE_2 1 # Work
ACT_ANCHOR_ACTIVITY_TYPE_3 7 # School
ACT_ANCHOR_ACTIVITY_TYPE_4 8 # College

configuration file keys for parallel runs:

#ACT_POPULATION_FILE $TRANSIMS_ROOT/population/pop_converted
ACT_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/sample4.pop

TRANSIT_ROUTE_FILE $TRANSIMS_ROOT/network/Transit_Route.tbl

#SEL_POPULATION_FILE $TRANSIMS_ROOT/population/pop_located
SEL_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/sample4.pop
VEHICLE_FILE $TRANSIMS_ROOT/vehicle/vehicles.all
SEL_PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.plans
SEL_ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.act
#SEL_EVENT_FILE $TRANSIMS_ROOT/output/anomaly.offplan.trv

SEL_ITDB_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit

SEL_MESSAGE_LEVEL 0
SEL_NO_ITDB_INDEX 1

Data gathered by the Collator for feedback

Pop data
SEL_USE_RHHINC 1
SEL_USE_AGE 1

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 62

Act data
SEL_USE_START_ACT_LOCATION 1
SEL_USE_END_ACT_TYPE 1
SEL_USE_END_MODE_PREF 1
SEL_USE_END_ACT_LOCATION 1
SEL_USE_END_OTHER_PARTICIPANTS 1
SEL_USE_END_DUR_UB 1
SEL_USE_END_DUR_LB 1
SEL_USE_DRIVER_ID 1

Activity Location Table data
SEL_USE_START_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8
SEL_USE_END_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8

Route data
SEL_USE_EUCLID 1
SEL_USE_DURATION 1
SEL_USE_MODE_STRING 1

event data
#SEL_USE_OFF_PLAN 1

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 63

6.1.9 final2-C.cfg

This file has Collator keys for creating an iteration database to be
converted by ItdbByTour.pl into a "by-tour" database. -JPS

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr/
#CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

NET_DIRECTORY $TRANSIMS_ROOT/network
NET_NODE_TABLE Node.tbl
NET_LINK_TABLE Link.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.tbl
NET_PARKING_TABLE Parking.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.tbl
NET_TIMING_PLAN_TABLE Timing_Plan.tbl
NET_SPEED_TABLE Speed.tbl
NET_LANE_USE_TABLE Lane_Use.tbl
NET_TRANSIT_STOP_TABLE Transit_Stop.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.tbl
NET_DETECTOR_TABLE Detector.tbl
NET_TURN_PROHIBITION_TABLE Turn_Prohibition.tbl
NET_BARRIER_TABLE Barrier.tbl
NET_ACTIVITY_LOCATION_TABLE Activity_Location.tbl
NET_PROCESS_LINK_TABLE Process_Link.tbl

ACT_HOME_ACTIVITY_TYPE 0
ACT_WORK_ACTIVITY_TYPE 1
ACT_SCHOOL_ACTIVITY_TYPE 7

ACT_ANCHOR_ACTIVITY_TYPE_1 0 # Home
ACT_ANCHOR_ACTIVITY_TYPE_2 1 # Work
ACT_ANCHOR_ACTIVITY_TYPE_3 7 # School
ACT_ANCHOR_ACTIVITY_TYPE_4 8 # College

configuration file keys for parallel runs:

#ACT_POPULATION_FILE $TRANSIMS_ROOT/population/pop_converted
ACT_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/application/sample4.pop

TRANSIT_ROUTE_FILE $TRANSIMS_ROOT/network/Transit_Route.tbl

#SEL_POPULATION_FILE $TRANSIMS_ROOT/population/pop_located
SEL_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/application/sample4.pop
VEHICLE_FILE $TRANSIMS_ROOT/vehicle/vehicles.all
SEL_PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final2.plans
SEL_ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final2.act
#SEL_EVENT_FILE $TRANSIMS_ROOT/output/anomaly.offplan.trv

SEL_ITDB_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final2

SEL_MESSAGE_LEVEL 0
SEL_NO_ITDB_INDEX 1

Data gathered by the Collator for feedback

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 64

Pop data
SEL_USE_RHHINC 1
SEL_USE_AGE 1

Act data
SEL_USE_START_ACT_LOCATION 1
SEL_USE_END_ACT_TYPE 1
SEL_USE_END_MODE_PREF 1
SEL_USE_END_ACT_LOCATION 1
SEL_USE_END_OTHER_PARTICIPANTS 1
SEL_USE_END_DUR_UB 1
SEL_USE_END_DUR_LB 1
SEL_USE_DRIVER_ID 1

Activity Location Table data
SEL_USE_START_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8
SEL_USE_END_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8

Route data
SEL_USE_EUCLID 1
SEL_USE_DURATION 1
SEL_USE_MODE_STRING 1

event data
#SEL_USE_OFF_PLAN 1

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 65

6.1.10 final0-C.cfg

This file has Collator keys for creating an iteration database to be
converted by ItdbByTour.pl into a "by-tour" database. -JPS

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr/
#CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

NET_DIRECTORY $TRANSIMS_ROOT/network
NET_NODE_TABLE Node.tbl
NET_LINK_TABLE Link.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.tbl
NET_PARKING_TABLE Parking.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.tbl
NET_TIMING_PLAN_TABLE Timing_Plan.tbl
NET_SPEED_TABLE Speed.tbl
NET_LANE_USE_TABLE Lane_Use.tbl
NET_TRANSIT_STOP_TABLE Transit_Stop.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.tbl
NET_DETECTOR_TABLE Detector.tbl
NET_TURN_PROHIBITION_TABLE Turn_Prohibition.tbl
NET_BARRIER_TABLE Barrier.tbl
NET_ACTIVITY_LOCATION_TABLE Activity_Location.tbl
NET_PROCESS_LINK_TABLE Process_Link.tbl

ACT_HOME_ACTIVITY_TYPE 0
ACT_WORK_ACTIVITY_TYPE 1
ACT_SCHOOL_ACTIVITY_TYPE 7

ACT_ANCHOR_ACTIVITY_TYPE_1 0 # Home
ACT_ANCHOR_ACTIVITY_TYPE_2 1 # Work
ACT_ANCHOR_ACTIVITY_TYPE_3 7 # School
ACT_ANCHOR_ACTIVITY_TYPE_4 8 # College

configuration file keys for parallel runs:

#ACT_POPULATION_FILE $TRANSIMS_ROOT/population/pop_converted
ACT_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/application/sample4.pop

TRANSIT_ROUTE_FILE $TRANSIMS_ROOT/network/Transit_Route.tbl

#SEL_POPULATION_FILE $TRANSIMS_ROOT/population/pop_located
SEL_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/application/sample4.pop
VEHICLE_FILE $TRANSIMS_ROOT/vehicle/vehicles.all
SEL_PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final0.plans
SEL_ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final0.act
#SEL_EVENT_FILE $TRANSIMS_ROOT/output/anomaly.offplan.trv

SEL_ITDB_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final0

SEL_MESSAGE_LEVEL 0
SEL_NO_ITDB_INDEX 1

Data gathered by the Collator for feedback

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 66

Pop data
SEL_USE_RHHINC 1
SEL_USE_AGE 1

Act data
SEL_USE_START_ACT_LOCATION 1
SEL_USE_END_ACT_TYPE 1
SEL_USE_END_MODE_PREF 1
SEL_USE_END_ACT_LOCATION 1
SEL_USE_END_OTHER_PARTICIPANTS 1
SEL_USE_END_DUR_UB 1
SEL_USE_END_DUR_LB 1
SEL_USE_DRIVER_ID 1

Activity Location Table data
SEL_USE_START_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8
SEL_USE_END_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8

Route data
SEL_USE_EUCLID 1
SEL_USE_DURATION 1
SEL_USE_MODE_STRING 1

event data
#SEL_USE_OFF_PLAN 1

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 67

6.1.11 final1-A.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

recent corrections:

ACT_TRAVEL_TIMES_FILE $TRANSIMS_ROOT/activity/traveltime_050101
ACT_TRAVEL_TIME_FUNCTION_MODES 1;2;3;4;5;6;7

ACT_SURVEY_ACTIVITY_FILE $TRANSIMS_ROOT/data/survey_activities
ACT_SURVEY_WEIGHTS_FILE $TRANSIMS_ROOT/data/survey_weights_25
#ACT_TRAVEL_TIME_INTERVALS_FILE $TRANSIMS_ROOT/activity/time_intervals

LOG_ACT 1

configuration file keys for ONDN activity feedback run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/application/transit.act
ACT_FEEDBACK_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final1.fdbk

ACT_PARTIAL_OUTPUT $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final1.partial-act
ACT_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final1.ActivityRegenerator.problems
ACT_LOG_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final1.ActivityRegenerator.log

rockhopper changes:

24 hours
ROUTER_MAX_LEG_LENGTH 86400

used for park and ride
ROUTER_MAX_NODES_EXAMINED 5000000

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 68

6.1.12 auto-R.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

keys for ONDN re-route run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/auto.act
#ROUTER_LINK_DELAY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/summary.tim

ROUTER_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/auto.Router.problems
PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/auto.plans
ROUTER_COMPLETED_HOUSEHOLD_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/auto.completed-HH

ROUTER_DELAY_NOISE 0.10
ROUTER_OVERDO 0.0
ROUTER_SEED 912345678

configuration file keys for better performance & results:

ROUTER_DISPLAY_PATHS 0 # excessive output = 1
ROUTER_INTERNAL_PLAN_SIZE 2000 # default = 400
ROUTER_MAX_NODES_EXAMINED 5000000 # default = 400000
ROUTER_MESSAGE_LEVEL 1 # severe=0, everything=1
ROUTER_NUMBER_THREADS 2 # per box
LOG_ROUTING 1 # for speed calc
ROUTER_MAX_LEG_LENGTH 86400 # max 24 hour legs = basically unlimited
This should limit route hopping without impacting route generation:
ROUTER_GET_ON_TRANSIT_DELAY 0
ROUTER_GET_OFF_TRANSIT_DELAY 60

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

new configuration file key from Paula:

ROUTER_MAX_TRIP_TIME 172800

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 69

6.1.13 auto-C.cfg

This file has Collator keys for creating an iteration database to be
converted by ItdbByTour.pl into a "by-tour" database. -JPS

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr/
#CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

NET_DIRECTORY $TRANSIMS_ROOT/network
NET_NODE_TABLE Node.tbl
NET_LINK_TABLE Link.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.tbl
NET_PARKING_TABLE Parking.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.tbl
NET_TIMING_PLAN_TABLE Timing_Plan.tbl
NET_SPEED_TABLE Speed.tbl
NET_LANE_USE_TABLE Lane_Use.tbl
NET_TRANSIT_STOP_TABLE Transit_Stop.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.tbl
NET_DETECTOR_TABLE Detector.tbl
NET_TURN_PROHIBITION_TABLE Turn_Prohibition.tbl
NET_BARRIER_TABLE Barrier.tbl
NET_ACTIVITY_LOCATION_TABLE Activity_Location.tbl
NET_PROCESS_LINK_TABLE Process_Link.tbl

ACT_HOME_ACTIVITY_TYPE 0
ACT_WORK_ACTIVITY_TYPE 1
ACT_SCHOOL_ACTIVITY_TYPE 7

ACT_ANCHOR_ACTIVITY_TYPE_1 0 # Home
ACT_ANCHOR_ACTIVITY_TYPE_2 1 # Work
ACT_ANCHOR_ACTIVITY_TYPE_3 7 # School
ACT_ANCHOR_ACTIVITY_TYPE_4 8 # College

configuration file keys for parallel runs:

#ACT_POPULATION_FILE $TRANSIMS_ROOT/population/pop_converted
ACT_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/sample4.pop

TRANSIT_ROUTE_FILE $TRANSIMS_ROOT/network/Transit_Route.tbl

#SEL_POPULATION_FILE $TRANSIMS_ROOT/population/pop_located
SEL_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/sample4.pop
VEHICLE_FILE $TRANSIMS_ROOT/vehicle/vehicles.all
SEL_PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/auto.plans
SEL_ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/auto.act
#SEL_EVENT_FILE $TRANSIMS_ROOT/output/anomaly.offplan.trv

SEL_ITDB_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/auto

SEL_MESSAGE_LEVEL 0
SEL_NO_ITDB_INDEX 1

Data gathered by the Collator for feedback

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 70

Pop data
SEL_USE_RHHINC 1
SEL_USE_AGE 1

Act data
SEL_USE_START_ACT_LOCATION 1
SEL_USE_END_ACT_TYPE 1
SEL_USE_END_MODE_PREF 1
SEL_USE_END_ACT_LOCATION 1
SEL_USE_END_OTHER_PARTICIPANTS 1
SEL_USE_END_DUR_UB 1
SEL_USE_END_DUR_LB 1
SEL_USE_DRIVER_ID 1

Activity Location Table data
SEL_USE_START_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8
SEL_USE_END_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8

Route data
SEL_USE_EUCLID 1
SEL_USE_DURATION 1
SEL_USE_MODE_STRING 1

event data
#SEL_USE_OFF_PLAN 1

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 71

6.1.14 RemoveSubtours-C.cfg

This file has Collator keys for creating an iteration database to be
converted by ItdbByTour.pl into a "by-tour" database. -JPS

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr/
#CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

NET_DIRECTORY $TRANSIMS_ROOT/network
NET_NODE_TABLE Node.tbl
NET_LINK_TABLE Link.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.tbl
NET_PARKING_TABLE Parking.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.tbl
NET_TIMING_PLAN_TABLE Timing_Plan.tbl
NET_SPEED_TABLE Speed.tbl
NET_LANE_USE_TABLE Lane_Use.tbl
NET_TRANSIT_STOP_TABLE Transit_Stop.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.tbl
NET_DETECTOR_TABLE Detector.tbl
NET_TURN_PROHIBITION_TABLE Turn_Prohibition.tbl
NET_BARRIER_TABLE Barrier.tbl
NET_ACTIVITY_LOCATION_TABLE Activity_Location.tbl
NET_PROCESS_LINK_TABLE Process_Link.tbl

ACT_HOME_ACTIVITY_TYPE 0
ACT_WORK_ACTIVITY_TYPE 1
ACT_SCHOOL_ACTIVITY_TYPE 7

ACT_ANCHOR_ACTIVITY_TYPE_1 0 # Home
ACT_ANCHOR_ACTIVITY_TYPE_2 1 # Work
ACT_ANCHOR_ACTIVITY_TYPE_3 7 # School
ACT_ANCHOR_ACTIVITY_TYPE_4 8 # College

#configuration file keys for parallel runs:

#ACT_POPULATION_FILE $TRANSIMS_ROOT/population/pop_converted
ACT_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/sample4.pop

TRANSIT_ROUTE_FILE $TRANSIMS_ROOT/network/Transit_Route.tbl

#SEL_POPULATION_FILE $TRANSIMS_ROOT/population/pop_located
SEL_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/sample4.pop
VEHICLE_FILE $TRANSIMS_ROOT/vehicle/vehicles.all
#SEL_PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225 plans/R-MF0.1
SEL_ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/sample4.act
#SEL_EVENT_FILE $TRANSIMS_ROOT/output/anomaly.offplan.trv

SEL_ITDB_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/sample4

SEL_MESSAGE_LEVEL 0
SEL_NO_ITDB_INDEX 1

Data gathered by the Collator for feedback

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 72

Pop data
SEL_USE_RHHINC 1
SEL_USE_AGE 1

Act data
SEL_USE_START_ACT_LOCATION 1
SEL_USE_END_ACT_TYPE 1
SEL_USE_END_MODE_PREF 1
SEL_USE_END_ACT_LOCATION 1
SEL_USE_END_OTHER_PARTICIPANTS 1
SEL_USE_END_DUR_UB 1
SEL_USE_END_DUR_LB 1
SEL_USE_DRIVER_ID 1

Activity Location Table data
SEL_USE_START_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8
SEL_USE_END_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8

Route data
SEL_USE_EUCLID 1
SEL_USE_DURATION 1
SEL_USE_MODE_STRING 1

event data
#SEL_USE_OFF_PLAN 1

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 73

6.1.15 final2-R.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

configuration file keys for ONDN re-route run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final2.act
#ROUTER_LINK_DELAY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/summary.tim

ROUTER_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final2.Router.problems
PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final2.plans
ROUTER_COMPLETED_HOUSEHOLD_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final2.completed-HH

ROUTER_DELAY_NOISE 0.10
ROUTER_OVERDO 0.0
ROUTER_SEED 912345678

configuration file keys for better performance & results:

ROUTER_DISPLAY_PATHS 0 # excessive output = 1
ROUTER_INTERNAL_PLAN_SIZE 2000 # default = 400
ROUTER_MAX_NODES_EXAMINED 5000000 # default = 400000
ROUTER_MESSAGE_LEVEL 1 # severe=0, everything=1
ROUTER_NUMBER_THREADS 2 # per box
LOG_ROUTING 1 # for speed calc
ROUTER_MAX_LEG_LENGTH 86400 # max 24 hour legs = basically unlimited
This should limit route hopping without impacting route generation:
ROUTER_GET_ON_TRANSIT_DELAY 240
ROUTER_GET_OFF_TRANSIT_DELAY 240

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

new configuration file key from Paula:

ROUTER_MAX_TRIP_TIME 172800

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 74

6.1.16 final1-C.cfg

This file has Collator keys for creating an iteration database to be
converted by ItdbByTour.pl into a "by-tour" database. -JPS

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr/
#CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

NET_DIRECTORY $TRANSIMS_ROOT/network
NET_NODE_TABLE Node.tbl
NET_LINK_TABLE Link.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.tbl
NET_PARKING_TABLE Parking.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.tbl
NET_TIMING_PLAN_TABLE Timing_Plan.tbl
NET_SPEED_TABLE Speed.tbl
NET_LANE_USE_TABLE Lane_Use.tbl
NET_TRANSIT_STOP_TABLE Transit_Stop.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.tbl
NET_DETECTOR_TABLE Detector.tbl
NET_TURN_PROHIBITION_TABLE Turn_Prohibition.tbl
NET_BARRIER_TABLE Barrier.tbl
NET_ACTIVITY_LOCATION_TABLE Activity_Location.tbl
NET_PROCESS_LINK_TABLE Process_Link.tbl

ACT_HOME_ACTIVITY_TYPE 0
ACT_WORK_ACTIVITY_TYPE 1
ACT_SCHOOL_ACTIVITY_TYPE 7

ACT_ANCHOR_ACTIVITY_TYPE_1 0 # Home
ACT_ANCHOR_ACTIVITY_TYPE_2 1 # Work
ACT_ANCHOR_ACTIVITY_TYPE_3 7 # School
ACT_ANCHOR_ACTIVITY_TYPE_4 8 # College

configuration file keys for parallel runs:

#ACT_POPULATION_FILE $TRANSIMS_ROOT/population/pop_converted
ACT_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/application/sample4.pop

TRANSIT_ROUTE_FILE $TRANSIMS_ROOT/network/Transit_Route.tbl

#SEL_POPULATION_FILE $TRANSIMS_ROOT/population/pop_located
SEL_POPULATION_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/application/sample4.pop
VEHICLE_FILE $TRANSIMS_ROOT/vehicle/vehicles.all
SEL_PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final1.plans
SEL_ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final1.act
#SEL_EVENT_FILE $TRANSIMS_ROOT/output/anomaly.offplan.trv

SEL_ITDB_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final1

SEL_MESSAGE_LEVEL 0
SEL_NO_ITDB_INDEX 1

Data gathered by the Collator for feedback

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 75

Pop data
SEL_USE_RHHINC 1
SEL_USE_AGE 1

Act data
SEL_USE_START_ACT_LOCATION 1
SEL_USE_END_ACT_TYPE 1
SEL_USE_END_MODE_PREF 1
SEL_USE_END_ACT_LOCATION 1
SEL_USE_END_OTHER_PARTICIPANTS 1
SEL_USE_END_DUR_UB 1
SEL_USE_END_DUR_LB 1
SEL_USE_DRIVER_ID 1

Activity Location Table data
SEL_USE_START_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8
SEL_USE_END_ACT_USER_DATA Tran_Dist; PARKING_ZN; URBAN_TYPE; River_Zone; Zones_8

Route data
SEL_USE_EUCLID 1
SEL_USE_DURATION 1
SEL_USE_MODE_STRING 1

event data
#SEL_USE_OFF_PLAN 1

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 76

6.1.17 final0-A.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

recent corrections:

ACT_TRAVEL_TIMES_FILE $TRANSIMS_ROOT/activity/traveltime_050101
ACT_TRAVEL_TIME_FUNCTION_MODES 1;2;3;4;5;6;7

ACT_SURVEY_ACTIVITY_FILE $TRANSIMS_ROOT/data/survey_activities
ACT_SURVEY_WEIGHTS_FILE $TRANSIMS_ROOT/data/survey_weights_25
#ACT_TRAVEL_TIME_INTERVALS_FILE $TRANSIMS_ROOT/activity/time_intervals

LOG_ACT 1

configuration file keys for ONDN activity feedback run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/application/transit.act
ACT_FEEDBACK_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final0.fdbk

ACT_PARTIAL_OUTPUT $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final0.partial-act
ACT_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final0.ActivityRegenerator.problems
ACT_LOG_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/final0.ActivityRegenerator.log

rockhopper changes:

24 hours
ROUTER_MAX_LEG_LENGTH 86400

used for park and ride
ROUTER_MAX_NODES_EXAMINED 5000000

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 77

6.1.18 test-R.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

configuration file keys for ONDN re-route run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.act
#ROUTER_LINK_DELAY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/summary.tim

ROUTER_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/test.Router.problems
PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/test.plans
ROUTER_COMPLETED_HOUSEHOLD_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/test.completed-HH

ROUTER_DELAY_NOISE 0.10
ROUTER_OVERDO 0.0
ROUTER_SEED 912345678

configuration file keys for better performance & results:

ROUTER_DISPLAY_PATHS 0 # excessive output = 1
ROUTER_INTERNAL_PLAN_SIZE 2000 # default = 400
ROUTER_MAX_NODES_EXAMINED 5000000 # default = 400000
ROUTER_MESSAGE_LEVEL 1 # severe=0, everything=1
ROUTER_NUMBER_THREADS 2 # per box
LOG_ROUTING 1 # for speed calc
ROUTER_MAX_LEG_LENGTH 86400 # max 24 hour legs = basically unlimited
This should limit route hopping without impacting route generation:
ROUTER_GET_ON_TRANSIT_DELAY 240
ROUTER_GET_OFF_TRANSIT_DELAY 240

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

new configuration file key from Paula:

ROUTER_MAX_TRIP_TIME 172800

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 78

6.1.19 transit-R.cfg

TRANSIMS_ROOT /home/transims/CaseStudy3/scenarios/allstr

CONFIG_DEFAULT_FILE $TRANSIMS_ROOT/allstr.cfg

configuration file keys for ONDN re-route run:

ACTIVITY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.act
#ROUTER_LINK_DELAY_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/summary.tim

ROUTER_PROBLEM_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.Router.problems
PLAN_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.plans
ROUTER_COMPLETED_HOUSEHOLD_FILE $TRANSIMS_ROOT/feedback/mode/ONDN/Test20020225/transit.completed-HH

ROUTER_DELAY_NOISE 0.10
ROUTER_OVERDO 0.0
ROUTER_SEED 912345678

configuration file keys for better performance & results:

ROUTER_DISPLAY_PATHS 0 # excessive output = 1
ROUTER_INTERNAL_PLAN_SIZE 2000 # default = 400
ROUTER_MAX_NODES_EXAMINED 5000000 # default = 400000
ROUTER_MESSAGE_LEVEL 1 # severe=0, everything=1
ROUTER_NUMBER_THREADS 2 # per box
LOG_ROUTING 1 # for speed calc
ROUTER_MAX_LEG_LENGTH 86400 # max 24 hour legs = basically unlimited
This should limit route hopping without impacting route generation:
ROUTER_GET_ON_TRANSIT_DELAY 0
ROUTER_GET_OFF_TRANSIT_DELAY 60

rockhopper changes:

NET_ACTIVITY_LOCATION_TABLE Activity_Location.20010806.tbl
NET_DETECTOR_TABLE Detector.20010921.tbl
NET_LANE_CONNECTIVITY_TABLE Lane_Connectivity.20011119.tbl
NET_LINK_TABLE Link.20011119.tbl
NET_NODE_TABLE Node.20010806.tbl
NET_PARKING_TABLE Parking.20010806.tbl
NET_PHASING_PLAN_TABLE Phasing_Plan.20010921.tbl
NET_POCKET_LANE_TABLE Pocket_Lane.20010921.tbl
NET_PROCESS_LINK_TABLE Process_Link_061901.tbl
NET_SIGNAL_COORDINATOR_TABLE Signal_Coordinator.20010806.tbl
NET_SIGNALIZED_NODE_TABLE Signalized_Node.20010921.tbl
NET_UNSIGNALIZED_NODE_TABLE Unsignalized_Node.20011119.tbl

TRANSIT_SCHEDULE_FILE $TRANSIMS_ROOT/network/Transit_Schedule.20011113.tbl

new configuration file key from Paula:

ROUTER_MAX_TRIP_TIME 172800

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 79

6.2 Scripts

Note: Long code lines that do not fit completely on one line are shown in italics and
continued on to the next line.

6.2.1 run.csh

#! /bin/csh

##################################
Step 1: definitions only

cd /home/transims/CaseStudy3/scenarios/allstr/feedback/mode/ONDN/Test20020225

##################################
Step 2: AS7_ONDN.w.1.1.tdb

cp ../itdb/init/AS7.it.gz .
gunzip AS7.it.gz

./scripts/ItdbByTour.pl AS7.it AS7.tdb

./scripts/FilterONDN.pl AS7.tdb AS7_ONDN.tdb

./scripts/Stratify.pl AS7_ONDN.tdb AS7_ONDN
mv AS7_ONDN.w.1.1 AS7_ONDN.w.1.1.tdb
rm AS7_ONDN.?.?.?

##################################
Step 3: sample1.tdb

./scripts/FilterOther.pl AS7_ONDN.w.1.1.tdb AS7_ONDN.w.1.1_s=0_age_X.tdb

head -1 AS7_ONDN.w.1.1_s=0_age_X.tdb >! sample0.tdb
./scripts/Select-Random.pl 24823341 0.019 AS7_ONDN.w.1.1_s=0_age_X.tdb tmp1.tdb tmp2.tdb
cat tmp1.tdb >> sample0.tdb

Remove school & college tours
gawk 'NR==1{print} NR>1{if($31==1)print}' sample0.tdb >! tmp3.tdb
remove travelers using mode 8
gawk '{if($2!=520083 && $2!=523583 && $2!=529488 && $2!=741155 && $2!=743571 &&
$2!=527237 && $2!=534805 && $2!=536018)print}' tmp3.tdb >! tmp4.tdb
reduce number to 100 +1 bike trip:
gawk '{if(NR!=85)print}' tmp4.tdb >! tmp5.tdb
remove nightshift worker
gawk '{if($2!=506629)print}' tmp5.tdb >! sample3.tdb

##################################
Step 4: sample1.pop, sample1.act

./scripts/Match_Acts.pl sample3.tdb
/home/transims/CaseStudy3/scenarios/allstr/activity/AS7nt tmp1.act
clean out extra home activities
gawk '{if($2!=518380 || $3>4)print}' tmp1.act > tmp2.act

re-time & re-number
./scripts/FixActs.pl tmp2.act > tmp3.act
gawk '{if($2==527178 && $3==3){$10=36;$11=36;$14=36-$7;$15=36-$6}print}' OFS="\t"
tmp3.act > sample3.act

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 80

./scripts/Match_Pop.pl sample3.tdb
/home/transims/CaseStudy3/scenarios/allstr/population/pop_located sample3.pop

##################################
Step 5: no-subtours.act, transit.act

remove sub-tours
/home/transims/CaseStudy3/bin/Collator config/RemoveSubtours-C.cfg
gawk 'NR>2{if($4!=0)print $1,$7,"MS 8"}' FS="," sample3.000.it | sort -n | uniq >! no-
subtours.fdbk

regenerate acts
/home/transims/CaseStudy3/bin/ActivityRegenerator config/RemoveSubtours-A.cfg

merge with previous
$TRANSIMS_HOME/bin/MergeIndices no-subtours.hh.idx sample3.act.hh.idx no-
subtours.partial-act.hh.idx
$TRANSIMS_HOME/bin/IndexDefrag no-subtours.hh.idx no-subtours.act
rm no-subtours no-subtours.hh.idx

create tour database with correct numbering
./scripts/ItdbByTour.pl sample3.000.it sample3-renumb.tdb

all X modes use generalized transit
./scripts/ReModeTrans.pl sample3-renumb.tdb transit.HH transit.fdbk

regenerate acts
/home/transims/CaseStudy3/bin/ActivityRegenerator config/ReModeTrans-A.cfg

change all first activities to mode 3 (aesthetic reasons only)
mv transit.act tmp4.act
gawk '{if($18==2)$18=1;print}' OFS="\t" tmp4.act > transit.act

##################################
Step 6:

route transit.act
/home/transims/CaseStudy3/bin/Router config/transit-R.cfg >&! transit.Router.log

collate
/home/transims/CaseStudy3/bin/Collator config/transit-C.cfg

tour-based
./scripts/ItdbByTour.pl transit.000.it transit.tdb

data file
gawk 'NR==1{print "HH\tTrav\tAct\tIncome\tParking\tT-Time\tT-AnchorMod\tDistance"}
NR>1{print $1,$2,$6,$3,$28,$10,$31,$11}' OFS="\t" transit.tdb >! transit.dat

##################################
Step 6a: attempt to change Router to slow transit over walk
Could change on/off transit delays, or walking speed.

route transit.act
/home/transims/CaseStudy3/bin/Router config/test-R.cfg >&! test.Router.log

collate
/home/transims/CaseStudy3/bin/Collator config/test-C.cfg

tour-based
./scripts/ItdbByTour.pl test.000.it test.tdb

data file
gawk 'NR==1{print "HH\tTrav\tAct\tIncome\tParking\tT-Time\tT-AnchorMod\tDistance"}
NR>1{print $1,$2,$6,$3,$28,$10,$31,$11}' OFS="\t" test.tdb >! test.dat

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 81

##################################
Step 7: count router's generalized transit split into walk or transit

gawk '{print $7}' transit.dat | sort -n | uniq -c | gawk 'NR==1{print"AnchMod\tFraction"}
NR>1{print $2,$1/100}' OFS="\t"

##################################
Step 8: Eq.14 is negative;
1% chance sample drawn from METRO's target distr.

##################################
Step 9: auto.act, auto.plans, auto.tdb, auto.dat

replace generalized transit with auto
gawk 'NR>1{print $1,$6,"M 2 3"}' transit.tdb >! auto.fdbk

regenerate acts
/home/transims/CaseStudy3/bin/ActivityRegenerator config/ReModeAuto-A.cfg

route auto.act
/home/transims/CaseStudy3/bin/Router config/auto-R.cfg >&! auto.Router.log

collate
/home/transims/CaseStudy3/bin/Collator config/auto-C.cfg

tour-based
./scripts/ItdbByTour.pl auto.000.it auto.tdb

data file
gawk 'NR==1{print "HH\tTrav\tAct\tIncome\tParking\tA-Time\tA-AnchorMod\tDistance"}
NR>1{print $1,$2,$6,$3,$28,$10,$31,$11}' OFS="\t" auto.tdb >! auto.dat

##################################
Step 10: combined.w.dat, combined.t.dat

get walk tours from test.dat (exclude bike trip)
gawk 'NR==1{print} NR>1{if($7==1 && $2!=534042)print}' test.dat >! transit.w.dat

get transit tours from test.dat
gawk 'NR==1{print} NR>1{if($7!=1)print}' test.dat >! transit.t.dat

OR
get transit tours from transit.dat (match with test.dat)
head -1 transit.dat >! transit.t.dat
foreach t (`gawk 'NR>1{if($7!=1)print $2}' test.dat`)
gawk -v T=$t '{if($2==T)print}' transit.dat >> transit.t.dat
end

combine, add parking cost (NOTE: script is hard-wired for fields)
./scripts/CombineDat.pl transit.w.dat auto.dat >! combined.w.dat
./scripts/CombineDat.pl transit.t.dat auto.dat >! combined.t.dat

##################################
Step 11: alpha_w = 0.0000033, alpha_t = 0.00004, auto_rate = $0.03/km

calibrate
gawk -v a=0.0000033 -v r=0.03
'NR>1{Cw=a*log($4+1.01)*$6;Ca=a*log($4+1.01)*$9+$11+r*$8/1000;if(Cw<Ca)sum++;} END{print
sum}' combined.w.dat

gawk -v a=0.00004 -v r=0.0
'NR>1{Ct=a*log($4+1.01)*$6+1;Ca=a*log($4+1.01)*$9+$11+r*$8/1000;if(Ct<Ca)sum++;}
END{print sum}' combined.t.dat
OR

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 82

gawk -v a=0.00004 -v r=0.03
'NR>1{Ct=a*log($4+1.01)*$6+1;Ca=a*log($4+1.01)*$9+$11+r*$8/1000;if(Ct<Ca)sum++;}
END{print sum}' combined.t.dat

then make cost databases
gawk -v a=0.0000033 -v r=0.03 'NR==1{print $1,$3,$7,"T-Cost",$10,"A-Cost"}
NR>1{Cw=a*log($4+1.01)*$6;Ca=a*log($4+1.01)*$9+$11+r*$8/1000;print $1,$3,$7,Cw,$10,Ca}'
OFS="\t" combined.w.dat >! combined.w.cdb

gawk -v a=0.00004 -v r=0.03 'NR==1{print $1,$3,$7,"T-Cost",$10,"A-Cost"}
NR>1{Ct=a*log($4+1.01)*$6+1;Ca=a*log($4+1.01)*$9+$11+r*$8/1000;print $1,$3,$7,Ct,$10,Ca}'
OFS="\t" combined.t.dat >! combined.t.cdb

##################################

clean
mkdir calibration
mv *.* calibration/

##################################
##################################
Step 12: final0.act, final0.plans, final0.tdb, final0.dat

basically repeat steps 3-9

head -1 calibration/AS7_ONDN.w.1.1_s=0_age_X.tdb >! sample0.tdb
./scripts/Select-Random.pl 2482341 0.0205 calibration/AS7_ONDN.w.1.1_s=0_age_X.tdb
tmp1.tdb
cat tmp1.tdb >> sample0.tdb

Remove school & college tours
gawk 'NR==1{print} NR>1{if($31==1)print}' sample0.tdb >! tmp3.tdb
remove travelers using mode 8 on primary anchor
gawk '{if($2!=528530 && $2!=535111 && $2!=681479 && $2!=682445 && $2!=741155)print}'
tmp3.tdb >! tmp4.tdb
remove travelers using mode 8 elsewhere
gawk '{if($2!=528127 && $2!=534730 && $2!=672569 && $2!=672606)print}' tmp4.tdb >!
tmp5.tdb
remove duplicate traveler
gawk 'NR==1{print;first=1;} NR>1{if($2==515965){if(first==1)print;first=-1}else{print}}'
tmp5.tdb >! sample4.tdb

##################################

./scripts/Match_Acts.pl sample4.tdb
/home/transims/CaseStudy3/scenarios/allstr/activity/AS7nt tmp1.act
clean out extra home activities
gawk '{if($2!=529320 || $3<4)print}' tmp1.act > tmp2.act

re-time & re-number
./scripts/FixActs.pl tmp2.act > sample4.act

./scripts/Match_Pop.pl sample4.tdb
/home/transims/CaseStudy3/scenarios/allstr/population/pop_located sample4.pop

##################################

remove sub-tours
/home/transims/CaseStudy3/bin/Collator config/RemoveSubtours-C.cfg
gawk 'NR>2{if($4!=0)print $1,$7,"MS 8"}' FS="," sample4.000.it | sort -n | uniq >! no-
subtours.fdbk
rm sample4.idx

regenerate acts
/home/transims/CaseStudy3/bin/ActivityRegenerator config/RemoveSubtours-A.cfg

merge with previous
$TRANSIMS_HOME/bin/MergeIndices no-subtours.hh.idx sample4.act.hh.idx no-
subtours.partial-act.hh.idx
$TRANSIMS_HOME/bin/IndexDefrag no-subtours.hh.idx no-subtours.act

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 83

rm no-subtours.partial-act.*.idx no-subtours.hh.idx no-subtours.fdbk.*.idx

create tour database with correct numbering
./scripts/ItdbByTour.pl sample4.000.it sample4-renumb.tdb

all X modes use generalized transit
./scripts/ReModeTrans.pl sample4-renumb.tdb transit.HH transit.fdbk

regenerate acts
/home/transims/CaseStudy3/bin/ActivityRegenerator config/ReModeTrans-A.cfg

change all first activities to mode 1 (aesthetic reasons only)
mv transit.act tmp4.act
gawk '{if($18==2)$18=1;print}' OFS="\t" tmp4.act > transit.act

##################################

route transit.act
/home/transims/CaseStudy3/bin/Router config/test-R.cfg >&! test.Router.log

collate
/home/transims/CaseStudy3/bin/Collator config/test-C.cfg

tour-based
./scripts/ItdbByTour.pl test.000.it test.tdb

data file
gawk 'NR==1{print "HH\tTrav\tAct\tIncome\tParking\tT-Time\tT-AnchorMod\tDistance"}
NR>1{print $1,$2,$6,$3,$28,$10,$31,$11}' OFS="\t" test.tdb >! test.dat

##################################

gawk '{print $7}' test.dat | sort -n | uniq -c | gawk 'NR==1{print"AnchMod\tFraction"}
NR>1{print $2,$1/100}' OFS="\t"

##################################

replace generalized transit with auto
gawk 'NR>1{print $1,$6,"M 2 3"}' test.tdb >! auto.fdbk

regenerate acts
/home/transims/CaseStudy3/bin/ActivityRegenerator config/ReModeAuto-A.cfg

route auto.act
/home/transims/CaseStudy3/bin/Router config/auto-R.cfg >&! auto.Router.log

collate
/home/transims/CaseStudy3/bin/Collator config/auto-C.cfg

tour-based
./scripts/ItdbByTour.pl auto.000.it auto.tdb

data file
gawk 'NR==1{print "HH\tTrav\tAct\tIncome\tParking\tA-Time\tA-AnchorMod\tDistance"}
NR>1{print $1,$2,$6,$3,$28,$10,$31,$11}' OFS="\t" auto.tdb >! auto.dat

##################################

get walk tours from test.dat
gawk 'NR==1{print} NR>1{if($7==1)print}' test.dat >! transit.w.dat

get transit tours from test.dat
gawk 'NR==1{print} NR>1{if($7!=1)print}' test.dat >! transit.t.dat

OR
get transit tours from transit.dat (match with test.dat)
head -1 transit.dat >! transit.t.dat
foreach t (`gawk 'NR>1{if($7!=1)print $2}' test.dat`)
gawk -v T=$t '{if($2==T)print}' transit.dat >> transit.t.dat
end

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 84

combine, add parking cost (NOTE: script is hard-wired for fields)
./scripts/CombineDat.pl transit.w.dat auto.dat >! combined.w.dat
./scripts/CombineDat.pl transit.t.dat auto.dat >! combined.t.dat

##################################
##################################

cost databases
gawk -v a=0.0000033 -v r=0.03 'NR==1{print $1,$3,$7,"T-Cost",$10,"A-Cost"}
NR>1{Cw=a*log($4+1.01)*$6;Ca=a*log($4+1.01)*$9+$11+r*$8/1000;print $1,$3,$7,Cw,$10,Ca}'
OFS="\t" combined.w.dat >! combined.w.cdb

gawk -v a=0.00004 -v r=0.03 'NR==1{print $1,$3,$7,"T-Cost",$10,"A-Cost"}
NR>1{Ct=a*log($4+1.01)*$6+1;Ca=a*log($4+1.01)*$9+$11+r*$8/1000;print $1,$3,$7,Ct,$10,Ca}'
OFS="\t" combined.t.dat >! combined.t.cdb

clean
mkdir application
mv *.* application/

guess modes
./bin/GuessMode 1 2 0.1 10 11 application/combined.w.cdb application/combined.w.cdb
final0.w.HH final0.w.fdbk final0.w.log
./bin/GuessMode 3 2 0.1 10 11 application/combined.t.cdb application/combined.t.cdb
final0.t.HH final0.t.fdbk final0.t.log

make rail trip look like a regular transit trip
gawk '{if($3==5){$3=3}print}' OFS="\t" application/combined.t.cdb >! combined.t2.cdb
./bin/GuessMode 3 2 0.1 10 11 combined.t2.cdb combined.t2.cdb final0.t.HH final0.t.fdbk
final0.t.log

summary of modes:
echo "HH\tAct\tT-mode\tA-prob" >! summary0.dat
gawk '{print $1,$2,"w",$3}' OFS="\t" final0.w.log >> summary0.dat
gawk '{print $1,$2,"t",$3}' OFS="\t" final0.t.log >> summary0.dat
gawk 'BEGIN{min=0;max=0} {sum+=$3;if($3!=0){max++};if($3==1){min++}} END{print
"expected/min/max walks: ",NR-sum,NR-max,NR-min}' final0.w.log
gawk 'BEGIN{min=0;max=0} {sum+=$3;if($3!=0){max++};if($3==1){min++}} END{print
"expected/min/max transit: ",NR-sum,NR-max,NR-min}' final0.t.log
gawk 'BEGIN{min=0;max=0} {sum+=$4;if($4!=0){max++};if($4==1){min++}} END{print
"expected/min/max auto: ",sum,min,max}' summary0.dat

merge changes (Note: walks are actually implemented as general-transit)
cat final0.?.fdbk | sed 's:2 M 2 1:2 M 2 3:g' | sort -n > final0.fdbk
cat final0.?.HH | sort -n | uniq > final0.HH

implement from transit.act
/home/transims/CaseStudy3/bin/ActivityRegenerator config/final0-A.cfg

merge with transit.act
$TRANSIMS_HOME/bin/MergeIndices final0.hh.idx application/transit.act.hh.idx
final0.partial-act.hh.idx
$TRANSIMS_HOME/bin/IndexDefrag final0.hh.idx final0.act
rm final0.partial-act.*.idx final0.hh.idx final0.fdbk.*.idx application/transit.act.*.idx

route final0.act
/home/transims/CaseStudy3/bin/Router config/final0-R.cfg >&! final0.Router.log

collate
/home/transims/CaseStudy3/bin/Collator config/final0-C.cfg

tour-based
./scripts/ItdbByTour.pl final0.000.it final0.tdb

data file
gawk 'NR==1{print "HH\tTrav\tAct\tIncome\tParking\tTime\tAnchorMod\tDistance"} NR>1{print
$1,$2,$6,$3,$28,$10,$31,$11}' OFS="\t" final0.tdb >! final0.dat

check if iteration is necessary (more than 4 transfers)
gawk '{print $30}' FS="," final0.000.it | sed 's:w::g' | sed 's:l:b:g' | sort | uniq -c

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 85

if iteration were necessary, do it by adding "reversing" feedback
commands for offending tours, then re-run the guess program with a
different seed, and select one of those randomly to add to the
correction feedback commands. Act, Route, Collate, etc.

##################################
##################################
Step 13: final1.act, final1.plans, final1.tdb, final1.dat,
final2.act, final2.plans, final2.tdb, final2.dat

guess modes
./bin/GuessMode2 1 2 0.1 10 19 application/combined.w.cdb application/combined.w.cdb
final1.w.HH final1.w.fdbk final1.w.log
./bin/GuessMode2 3 2 0.1 10 19 combined.t2.cdb combined.t2.cdb final1.t.HH final1.t.fdbk
final1.t.log

summary of modes:
echo "HH\tAct\tT-mode\tA-prob" >! summary1.dat
gawk '{print $1,$2,"w",$3}' OFS="\t" final1.w.log >> summary1.dat
gawk '{print $1,$2,"t",$3}' OFS="\t" final1.t.log >> summary1.dat
gawk 'BEGIN{min=0;max=0} {sum+=$3;if($3!=0){max++};if($3==1){min++}} END{print
"expected/min/max walks: ",NR-sum,NR-max,NR-min}' final1.w.log
gawk 'BEGIN{min=0;max=0} {sum+=$3;if($3!=0){max++};if($3==1){min++}} END{print
"expected/min/max transit: ",NR-sum,NR-max,NR-min}' final1.t.log
gawk 'BEGIN{min=0;max=0} {sum+=$4;if($4!=0){max++};if($4==1){min++}} END{print
"expected/min/max auto: ",sum,min,max}' summary1.dat

merge changes (Note: walks are actually implemented as general-transit)
cat final1.?.fdbk | sed 's:2 M 2 1:2 M 2 3:g' | sort -n > final1.fdbk
cat final1.?.HH | sort -n | uniq > final1.HH

implement from transit.act
/home/transims/CaseStudy3/bin/ActivityRegenerator config/final1-A.cfg

merge with transit.act
$TRANSIMS_HOME/bin/MergeIndices final1.hh.idx application/transit.act.hh.idx
final1.partial-act.hh.idx
$TRANSIMS_HOME/bin/IndexDefrag final1.hh.idx final1.act
rm final1.partial-act.*.idx final1.hh.idx final1.fdbk.*.idx application/transit.act.*.idx

route final1.act
/home/transims/CaseStudy3/bin/Router config/final1-R.cfg >&! final1.Router.log

collate
/home/transims/CaseStudy3/bin/Collator config/final1-C.cfg

tour-based
./scripts/ItdbByTour.pl final1.000.it final1.tdb

data file
gawk 'NR==1{print "HH\tTrav\tAct\tIncome\tParking\tTime\tAnchorMod\tDistance"} NR>1{print
$1,$2,$6,$3,$28,$10,$31,$11}' OFS="\t" final1.tdb >! final1.dat

check if iteration is necessary (more than 4 transfers)
gawk '{print $30}' FS="," final1.000.it | sed 's:w::g' | sed 's:l:b:g' | sort | uniq -c

##################################

arbitrarily split by transit mode from calibration
tail +2 application/auto.dat >! tmp1.dat
./scripts/Select-Random.pl 7 0.56 tmp1.dat tmp.w.dat tmp.t.dat
gawk 'NR==1{print $_,"ParkingCost"}' OFS="\t" application/auto.dat >! auto.w.dat
gawk 'NR==1{print $_,"ParkingCost"}' OFS="\t" application/auto.dat >! auto.t.dat
./scripts/AddParkingCost.pl tmp.w.dat >> auto.w.dat
./scripts/AddParkingCost.pl tmp.t.dat >> auto.t.dat
rm tmp1.dat tmp.w.dat tmp.t.dat

make cost databases

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 86

gawk -v a=0.0000033 -v r=0.03 'NR==1{print $1,$3,$7,"A-Cost"}
NR>1{Ca=a*log($4+1.01)*$6+$9+r*$8/1000;print $1,$3,$7,Ca}' OFS="\t" auto.w.dat >!
auto.w.cdb

gawk -v a=0.00004 -v r=0.03 'NR==1{print $1,$3,$7,"A-Cost"}
NR>1{Ca=a*log($4+1.01)*$6+$9+r*$8/1000;print $1,$3,$7,Ca}' OFS="\t" auto.t.dat >!
auto.t.cdb

guess modes
./bin/GuessMode 1 2 0.1 10 11 calibration/combined.w.cdb auto.w.cdb final2.w.HH
final2.w.fdbk final2.w.log
./bin/GuessMode 3 2 0.1 10 11 calibration/combined.t.cdb auto.t.cdb final2.t.HH
final2.t.fdbk final2.t.log

check distribution from which sample is drawn
gawk '{print $6,($6>$4)}' OFS="\t" calibration/combined.w.cdb | sort -n

merge changes (Note: walks are actually implemented as general-transit)
cat final2.?.fdbk | sed 's:2 M 1 2:2 M 3 2:g' | sort -n > final2.fdbk
cat final2.?.HH | sort -n | uniq > final2.HH

implement from auto.act
/home/transims/CaseStudy3/bin/ActivityRegenerator config/final2-A.cfg

merge with auto.act
$TRANSIMS_HOME/bin/MergeIndices final2.hh.idx application/auto.act.hh.idx final2.partial-
act.hh.idx
$TRANSIMS_HOME/bin/IndexDefrag final2.hh.idx final2.act
rm final2.partial-act.*.idx final2.hh.idx final2.fdbk.*.idx application/auto.act.*.idx

route final2.act
/home/transims/CaseStudy3/bin/Router config/final2-R.cfg >&! final2.Router.log

collate
/home/transims/CaseStudy3/bin/Collator config/final2-C.cfg

tour-based
./scripts/ItdbByTour.pl final2.000.it final2.tdb

data file
gawk 'NR==1{print "HH\tTrav\tAct\tIncome\tParking\tTime\tAnchorMod\tDistance"} NR>1{print
$1,$2,$6,$3,$28,$10,$31,$11}' OFS="\t" final2.tdb >! final2.dat

check if iteration is necessary (more than 4 transfers)
gawk '{print $30}' FS="," final2.000.it | sed 's:w::g' | sed 's:l:b:g' | sort | uniq -c
check mode split
gawk '{print $7}' final2.dat | sort -n | uniq -c

##################################

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 87

6.2.2 FixActs.pl

#!/usr/bin/perl
Solaris: /sw/Cvol/bin/perl

$delim = "\t";
$info = 0;

open(FILE1, $ARGV[0]) or die "Can't open file $ARGV[0].\n";
for($i=0;$i<$info;$i++) {$line = <FILE1>;if($i==$info-1){print $line;}}

$LastTrav = -1;

while(<FILE1>) {
 $line = $_; chop $line;
 @data = split($delim, $line);

 $Trav = $data[1];

 if($LastTrav != $Trav) {
 $ActID = 1;
 $data[13] = $data[9];
 $data[14] = $data[10];
 $data[5] = 0;
 $data[6] = 0;
 $Home = $data[20];
 }
 elsif($Home == $data[20]) {
 $ActID++;
 $data[13] = 36 - $data[6];
 $data[14] = 36 - $data[5];
 $data[9] = 36;
 $data[10] = 36;
 }
 else {
 $ActID++;
 }

 $data[2] = $ActID;

 print join("\t",@data),"\n";

 $LastTrav = $Trav;
}

close FILE1;

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 88

6.2.3 FilterONDN.pl

#! /usr/bin/perl -w

This takes a tour-based itdb as input and filters to include only
non-shared, ONDN tours with traveler's age>15.

$delim = "\t";
$heads = 1;

$TranDist = 1000; # maximum transit distance

get command line arguments:
if($#ARGV+1 != 2) {
 print "\nusage: FilterONDN.pl TOURITDB NEWDB\n\n";
 print " TOURITDB = input tour-based, tab delimited iteration database\n";
 print " NEWDB = output as TOURITDB, but only selected tours\n\n";
 exit;
}
local($origitdb, $outitdb) = @ARGV;

open input itdb and parse header
open(ORIGITDB, "$origitdb") || die "Failed to open $origitdb.";
read header lines
for($i=0;$i<$heads;$i++) {
 $line = <ORIGITDB>;
}

find fields automatically using header
chomp $line;
@data = split($delim, $line);
$i=0;
$AgeField = $ModeField = $SharField = $Tran1Field = $Tran2Field = -1;
while($data[$i]) {
 if($data[$i] eq "Age") {
 $AgeField = $i;
 }
 elsif($data[$i] eq "Mode") {
 $ModeField = $i;
 }
 elsif($data[$i] eq "Shared") {
 $SharField = $i;
 }
 elsif($data[$i] eq "HomeTranDist") {
 $Tran1Field = $i;
 }
 elsif($data[$i] eq "AnchorTranDist") {
 $Tran2Field = $i;
 }
 $i++;
}
check for mandatory fields
$Missing = 0;
if($AgeField == -1) {
 print "Missing Age.\n";
 $Missing++;
}
if($ModeField == -1) {
 print "Missing Mode.\n";
 $Missing++;
}

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 89

if($SharField == -1) {
 print "Missing Shared.\n";
 $Missing++;
}
if($Tran1Field == -1) {
 print "Missing HomeTranDist.\n";
 $Missing++;
}
if($Tran2Field == -1) {
 print "Missing AnchorTranDist.\n";
 $Missing++;
}
if($Missing > 0) {exit;}

open output files
open(NEWITDB, ">$outitdb") || die "Failed to open $outitdb.";

print itdb header
print NEWITDB $line,"\n";

###########################

loop over lines
while (<ORIGITDB>) {
 $line = $_; chomp $line;
 @data = split($delim, $line);

 # not-shared; ONDN; age>15;
 if($data[$Tran1Field]<$TranDist && $data[$Tran2Field]<$TranDist) {

 # print to new itdb
 print NEWITDB $line,"\n";
 }
}

###########################

close ORIGITDB;
close NEWITDB;

###########################
exit;

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 90

6.2.4 FilterOther.pl

#! /usr/bin/perl -w

This takes a tour-based itdb as input and filters to include only
non-shared, ONDN tours with traveler's age>15.

$delim = "\t";
$heads = 1;

get command line arguments:
if($#ARGV+1 != 2) {
 print "\nusage: FilterONDN.pl TOURITDB NEWDB\n\n";
 print " TOURITDB = input tour-based, tab delimited iteration database\n";
 print " NEWDB = output as TOURITDB, but only selected tours\n\n";
 exit;
}
local($origitdb, $outitdb) = @ARGV;

open input itdb and parse header
open(ORIGITDB, "$origitdb") || die "Failed to open $origitdb.";
read header lines
for($i=0;$i<$heads;$i++) {
 $line = <ORIGITDB>;
}

find fields automatically using header
chomp $line;
@data = split($delim, $line);
$i=0;
$AgeField = $ModePrefField = $SharField = $Tran1Field = $Tran2Field = -1;
while($data[$i]) {
 if($data[$i] eq "Age") {
 $AgeField = $i;
 }
 elsif($data[$i] eq "ModePref") {
 $ModePrefField = $i;
 }
 elsif($data[$i] eq "Shared") {
 $SharField = $i;
 }
 elsif($data[$i] eq "HomeTranDist") {
 $Tran1Field = $i;
 }
 elsif($data[$i] eq "AnchorTranDist") {
 $Tran2Field = $i;
 }
 $i++;
}
check for mandatory fields
$Missing = 0;
if($AgeField == -1) {
 print "Missing Age.\n";
 $Missing++;
}
if($ModePrefField == -1) {
 print "Missing ModePref.\n";
 $Missing++;
}
if($SharField == -1) {
 print "Missing Shared.\n";
 $Missing++;
}

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 91

if($Tran1Field == -1) {
 print "Missing HomeTranDist.\n";
 $Missing++;
}
if($Tran2Field == -1) {
 print "Missing AnchorTranDist.\n";
 $Missing++;
}
if($Missing > 0) {exit;}

open output files
open(NEWITDB, ">$outitdb") || die "Failed to open $outitdb.";

print itdb header
print NEWITDB $line,"\n";

###########################

loop over lines
while (<ORIGITDB>) {
 $line = $_; chomp $line;
 @data = split($delim, $line);

 # not-shared; ONDN; age>15;
 if($data[$SharField] == 0 && $data[$AgeField] > 15
 && $data[$ModePrefField] != 6 && $data[$ModePrefField] != 0) {

 # print to new itdb
 print NEWITDB $line,"\n";
 }
}

###########################

close ORIGITDB;
close NEWITDB;

###########################
exit;

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 92

6.2.5 AddParkingCost.pl

#!/usr/bin/perl

Parking Costs:

Taz Short Long Location
----- ----- ---- --------
1,2,10-16 2.47 4.94 CBD South of Burnside
3-6 1.59 3.18 CBD North of Burnside
43 1.38 2.76 Oregon Health Sciences University
510,934-936 0.80 1.59 Oregon City
846-847 0.00 3.03 Lloyd District
971-981 0.85 1.70 Vancouver WA

@ParkingCostShort = (0, 2.47, 1.59, 1.38, 0.80, 0.00, 0.85);
@ParkingCostLong = (0, 4.94, 3.18, 2.76, 1.59, 3.03, 1.70);

open(FILE2, $ARGV[0]) or die "Can't open file $ARGV[0].\n";

while(<FILE2>) {
 $line = $_; chomp $line;
 @data = split(" ", $line);

 print $line,"\t",$ParkingCostLong[$data[4]],"\n";

}

close FILE2;

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 93

6.2.6 CombineDat.pl

#!/usr/bin/perl

$info = 1;

Parking Costs:

Taz Short Long Location
----- ----- ---- --------
1,2,10-16 2.47 4.94 CBD South of Burnside
3-6 1.59 3.18 CBD North of Burnside
43 1.38 2.76 Oregon Health Sciences University
510,934-936 0.80 1.59 Oregon City
846-847 0.00 3.03 Lloyd District
971-981 0.85 1.70 Vancouver WA

@ParkingCostShort = (0, 2.47, 1.59, 1.38, 0.80, 0.00, 0.85);
@ParkingCostLong = (0, 4.94, 3.18, 2.76, 1.59, 3.03, 1.70);

open(FILE1,$ARGV[0]) or die "Can't open file: $ARGV[0].\n";
for($i=0;$i<$info;$i++) {$line = <FILE1>;chomp $line; print $line;}

while(<FILE1>) {
 # read one line into scalars
 $line = $_; chomp $line;
 @data = split("\t", $line);
 # save in a hash
 $Rec0{$data[1]} = $line;
}
close FILE1;

open(FILE2, $ARGV[1]) or die "Can't open file $ARGV[1].\n";
for($i=0;$i<$info;$i++) {$line = <FILE2>;}
print "\tA-Time\tA-Time2\tA-Time3\tA-AnchorMod\tA-WalkOnly\tParkingCost\n";

while(<FILE2>) {
 $line = $_; chomp $line;
 @data = split(" ", $line);

 if($Rec0{$data[1]}) {
 print $Rec0{$data[1]},"\t",$data[5],"\t",$data[6],"\t",$data[7],"\t",
 $data[8],"\t",$data[9],"\t",$ParkingCostLong[$data[4]],"\n";
 }

}

close FILE2;

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 94

6.2.7 ItdbByTour.pl

#! /usr/bin/perl -w

This script takes an iteration database with the mandatory fields as
specified below, and creates a new tour-based iteration database.

The tour database will have four types of fields: traveler/household
demographics, properties of the tour, properties of the home
location, and properties of the primary anchor.

To get fields from itdb using gawk:
head -2 itdb.000.it | tail -1 | gawk '{for(i=1;i<=NF;i++)print i-1,$i}' FS=","

$delim = ",";
$heads = 2;

get command line arguments: original and new iteration database filenames
if($#ARGV+1 != 2) {
 print "\nusage: ItdbByTour.pl ORIGITDB TOURITDB\n\n";
 exit;
}
local($origitdb, $touritdb) = @ARGV;

open input file
open(ORIGITDB, "$origitdb") || die "Failed to open $origitdb.";
read header lines
for($i=0;$i<$heads;$i++) {
 $line = <ORIGITDB>;
}
find fields automatically using header
chomp $line;
@data = split($delim, $line);
$i=0;
$HHField = $TravField = $TourField = $SubTField = $Act1Field = $Act2Field = $IncomeField
= $AgeField = $ActLoc1Field = $ActLoc2Field = $TypeField = $ModeField = $SharField =
$DurLBField = $DurUBField = $DriverField = $ParkingField = $Urban1Field = $Urban2Field =
$River1Field = $River2Field = $Tran1Field = $Tran2Field = $Zone1Field = $Zone2Field =
$TimeField = $DistField = $ModeStringField = -1;
while($data[$i]) {
 if($data[$i] eq "HH") {
 $HHField = $i;
 }
 elsif($data[$i] eq "TRAV") {
 $TravField = $i;
 }
 elsif($data[$i] eq "TOUR") {
 $TourField = $i;
 }
 elsif($data[$i] eq "SUBTOUR") {
 $SubTField = $i;
 }
 elsif($data[$i] eq "START_ACT_ID") {
 $Act1Field = $i;
 }
 elsif($data[$i] eq "END_ACT_ID") {
 $Act2Field = $i;
 }
 elsif($data[$i] eq "RHHINC") {
 $IncomeField = $i;
 }
 elsif($data[$i] eq "AGE") {
 $AgeField = $i;
 }

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 95

 elsif($data[$i] eq "START_ACT_LOCATION") {
 $ActLoc1Field = $i;
 }
 elsif($data[$i] eq "END_ACT_LOCATION") {
 $ActLoc2Field = $i;
 }
 elsif($data[$i] eq "END_ACT_TYPE") {
 $TypeField = $i;
 }
 elsif($data[$i] eq "END_MODE_PREF") {
 $ModeField = $i;
 }
 elsif($data[$i] eq "END_OTHER_PARTICIPANTS") {
 $SharField = $i;
 }
 elsif($data[$i] eq "END_DUR_UB") {
 $DurUBField = $i;
 }
 elsif($data[$i] eq "END_DUR_LB") {
 $DurLBField = $i;
 }
 elsif($data[$i] eq "DRIVER_ID") {
 $DriverField = $i;
 }
 elsif($data[$i] eq "END_ACT_USER_DATA_PARKING_ZN") { # *
 $ParkingField = $i;
 }
 elsif($data[$i] eq "START_ACT_USER_DATA_URBAN_TYPE") { # *
 $Urban1Field = $i;
 }
 elsif($data[$i] eq "END_ACT_USER_DATA_URBAN_TYPE") { # *
 $Urban2Field = $i;
 }
 elsif($data[$i] eq "START_ACT_USER_DATA_River_Zone") { # *
 $River1Field = $i;
 }
 elsif($data[$i] eq "END_ACT_USER_DATA_River_Zone") { # *
 $River2Field = $i;
 }
 elsif($data[$i] eq "START_ACT_USER_DATA_Tran_Dist") {
 $Tran1Field = $i;
 }
 elsif($data[$i] eq "END_ACT_USER_DATA_Tran_Dist") {
 $Tran2Field = $i;
 }
 elsif($data[$i] eq "START_ACT_USER_DATA_Zones_8") {
 $Zone1Field = $i;
 }
 elsif($data[$i] eq "END_ACT_USER_DATA_Zones_8") {
 $Zone2Field = $i;
 }
 elsif($data[$i] eq "DURATION") {
 #elsif($data[$i] eq "TIME_SUM") {
 $TimeField = $i;
 }
 elsif($data[$i] eq "EUCLID") {
 #elsif($data[$i] eq "DISTANCE_SUM") {
 $DistField = $i;
 }
 elsif($data[$i] eq "MODE_STRING") {
 $ModeStringField = $i;
 }
 $i++;
}
check for mandatory fields
$Missing = 0;
if($HHField == -1) {
 print "Missing HH.\n";
 $Missing++;
}

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 96

if($TravField == -1) {
 print "Missing TRAV.\n";
 $Missing++;
}
if($TourField == -1) {
 print "Missing TOUR.\n";
 $Missing++;
}
if($SubTField == -1) {
 print "Missing SUBTOUR.\n";
 $Missing++;
}
if($Act1Field == -1) {
 print "Missing START_ACT_ID.\n";
 $Missing++;
}
if($Act2Field == -1) {
 print "Missing END_ACT_ID.\n";
 $Missing++;
}
if($IncomeField == -1) {
 print "Missing RHHINC.\n";
 $Missing++;
}
if($AgeField == -1) {
 print "Missing AGE.\n";
 $Missing++;
}
if($ActLoc1Field == -1) {
 print "Missing START_ACT_LOCATION.\n";
 $Missing++;
}
if($ActLoc2Field == -1) {
 print "Missing END_ACT_LOCATION.\n";
 $Missing++;
}
if($TypeField == -1) {
 print "Missing END_ACT_TYPE.\n";
 $Missing++;
}
if($ModeField == -1) {
 print "Missing END_MODE_PREF.\n";
 $Missing++;
}
if($SharField == -1) {
 print "Missing END_OTHER_PARTICIPANTS.\n";
 $Missing++;
}
if($DurUBField == -1) {
 print "Missing END_DUR_UB.\n";
 $Missing++;
}
if($DurLBField == -1) {
 print "Missing END_DUR_LB.\n";
 $Missing++;
}
if($DriverField == -1) {
 print "Missing DRIVER_ID.\n";
 $Missing++;
}
if($ParkingField == -1) {
 print "Missing END_ACT_USER_DATA_PARKING_ZN.\n";
 $Missing++;
}
if($Urban1Field == -1) {
 print "Missing START_ACT_USER_DATA_URBAN_TYPE.\n";
 $Missing++;
}

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 97

if($Urban2Field == -1) {
 print "Missing END_ACT_USER_DATA_URBAN_TYPE.\n";
 $Missing++;
}
if($River1Field == -1) {
 print "Missing START_ACT_USER_DATA_River_Zone.\n";
 $Missing++;
}
if($River2Field == -1) {
 print "Missing END_ACT_USER_DATA_River_Zone.\n";
 $Missing++;
}
if($Tran1Field == -1) {
 print "Missing START_ACT_USER_DATA_Tran_Dist.\n";
 $Missing++;
}
if($Tran2Field == -1) {
 print "Missing END_ACT_USER_DATA_Tran_Dist.\n";
 $Missing++;
}
if($Zone1Field == -1) {
 print "Missing START_ACT_USER_DATA_Zones_8.\n";
 $Missing++;
}
if($Zone2Field == -1) {
 print "Missing END_ACT_USER_DATA_Zones_8.\n";
 $Missing++;
}
if($TimeField == -1) {
 print "Missing DURATION.\n";
 $Missing++;
}
if($DistField == -1) {
 print "Missing EUCLID.\n";
 $Missing++;
}
if($ModeStringField == -1) {
 print "Missing MODE_STRING.\n";
 $Missing++;
}
if($Missing > 0) {exit;}

open output files, print new header
open(TOURITDB, ">$touritdb") || die "Failed to open $touritdb.";
print TOURITDB "HH\tTrav\tIncome\tAge\t";
print TOURITDB
"Tour\tTourAct\tType\tMode\tModePref\tTime\tDistance\tMulitMode\tShared\tSubTours";
print TOURITDB "\tCrossColumbia\tCrossWillamette\tRailOnly\tMaxTranDist\tModeString\t";
print TOURITDB "HomeZone\tHomeRiver\tHomeUrban\tHomeTranDist\t";
print TOURITDB
"AnchorAct\tAnchorZone\tAnchorRiver\tAnchorUrban\tAnchorParking\tAnchorTranDist\t";
print TOURITDB "AnchorModPref\tAnchorMod\tAnchorType\tDickTime2\tDickTime3\n";

$Tour = -1;
$NotFirstTrav = 0;
$Time = "NA";

loop over lines
while (<ORIGITDB>) {
 $line = $_; chomp $line;
 @data = split($delim, $line);
 if($data[$Act1Field] != $data[$Act2Field]) { # skip "activity" entries
 if($Tour == $data[$TourField] && $Trav == $data[$TravField]) { # same tour
 if($data[$ModeField] != $CurrentMode) { $MultiMode = 1; }
 if($data[$ModeField] == 2 && $data[$River1Field] != $data[$River2Field]) {
 if($data[$River1Field] == 1 || $data[$River2Field] == 1) { $River1++; }
 else { $River2++; }
 }

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 98

 $CurrentMode = $data[$ModeField];
 $LastLoc = $data[$ActLoc2Field];
 if($data[$ModeField] == 4) { $RailOnly++; }
 if($MaxTranDist < $data[$Tran2Field]) { $MaxTranDist = $data[$Tran2Field]; }
 if($data[$SubTField] == 0) { # ignore sub-tours
 $GoodTour = ($data[$TimeField] ne "NA") ? $GoodTour : 0; # check Router field
 if($GoodTour == 1) { $Time += $data[$TimeField]; } # can't accumulate "NA"
 $Dist += $data[$DistField];
 $ModeString .= $data[$ModeStringField];
 $ActMode .= $data[$ModeField];
 if($data[$SharField] != 0) {
 if($data[$DriverField] == $Trav) { $Shared = 4; } # main-tour shared-
ride driver
 elsif($Shared < 2) {$Shared = 2;} # main-tour shared-ride passenger
 }
 if($LastLoc != $HomeLoc) { # final at-home activity cannot be anchor
 $ActivDuration = ($data[$DurLBField] + $data[$DurUBField])/2;
 $NewAnchor = 0;
 # work-school--or-college anchor:
 if($data[$TypeField] == 1 || $data[$TypeField] == 7 ||
$data[$TypeField] == 8) {
 if($TourType ne "work" || $ActivDuration > $AnchorDuration) {
 $NewAnchor = 1; # better anchor type, or better work anchor
 $TourType = "work";
 }
 }
 elsif($TourType ne "work" && $data[$TypeField] == 2) { # shop anchor
 if($TourType ne "shop" || $ActivDuration > $AnchorDuration) {
 $NewAnchor = 1; # better anchor type, or better shop anchor
 $TourType = "shop";
 }
 }
 elsif($TourType ne "work" && $TourType ne "shop"
 && $ActivDuration > $AnchorDuration) { # "other" type anchor, default
 $NewAnchor = 1; # better anchor
 } # note precedence of w, s, then o anchor locations
 if($NewAnchor == 1) {
 # get new anchor data
 $AnchorAct = $data[$Act2Field];
 $AnchorZone = $data[$Zone2Field];
 $AnchorRiver = $data[$River2Field];
 $AnchorUrban = $data[$Urban2Field];
 $AnchorParking = $data[$ParkingField];
 $AnchorTranDist = $data[$Tran2Field];
 $AnchorDuration = $ActivDuration;
 $AnchorModePref = $CurrentMode;
 $AnchorMode = $ModeString;
 $AnchorType = $data[$TypeField];
 $DickTime2 = $Time;
 $DickTime3 = $data[$TimeField];
 }
 } # ignoreA at-home activities
 } # not a sub-tour
 else { # is a subtour
 if($data[$SharField] != 0) {
 if($data[$DriverField] == $Trav && $Shared < 3) { $Shared = 3; } #
sub-tour shared-ride driver
 elsif($Shared == 0) {$Shared = 1;} # sub-tour shared-ride passenger
 }
 # count
 $Nsubtours++;
 }
 } # same tour
 else { # new tour or HH
 if($NotFirstTrav == 1) {
 # first determine tour-mode
 $TmpModeString = $ModeString;
 # test for illegal modes
 if($TmpModeString =~ /U/ || $TmpModeString =~ /NA/ || $TmpModeString =~
/p/ || $TmpModeString =~ /t/) {

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 99

 $TourMode = -1; # "bad mode"
 }
 else {
 # then get rid of magic k & K:
 $TmpModeString =~ s/K/k/g;
 # ignore bike for now:
 $TmpModeString =~ s/i/k/g;
 # determine mode for tour
 if($TmpModeString =~ /c/) {
 if($TmpModeString =~ /l/ || $TmpModeString =~ /b/) {
 $TourMode = 6; # "possible P&R mode"
 }
 else {
 $TourMode = 2; # "car-only mode"
 }
 }
 elsif($TmpModeString =~ /b/) {
 if($TmpModeString =~ /l/) {
 $TourMode = 5; # "mixed-transit mode"
 }
 else {
 $TourMode = 3; # "bus-only mode"
 }
 }
 elsif($TmpModeString =~ /l/) {
 $TourMode = 4; # "rail-only mode"
 }
 elsif($TmpModeString =~ /w/) {
 $TourMode = 1; # "walk-only mode"
 }
 elsif($TmpModeString =~ /k/) {
 $TourMode = 0; # "magic-only mode (includes k,K,i)"
 }
 }

 # determine primary anchor mode
 $TmpModeString = $AnchorMode;
 # test for illegal modes
 if($TmpModeString =~ /U/ || $TmpModeString =~ /NA/ || $TmpModeString =~
/p/ || $TmpModeString =~ /t/) {
 $AnchorMode = -1; # "bad mode"
 }
 else {
 # then get rid of magic k & K:
 $TmpModeString =~ s/K/k/g;
 # ignore bike for now:
 $TmpModeString =~ s/i/k/g;
 # determine mode for tour
 if($TmpModeString =~ /c/) {
 if($TmpModeString =~ /l/ || $TmpModeString =~ /b/) {
 $AnchorMode = 6; # "possible P&R mode"
 }
 else {
 $AnchorMode = 2; # "car-only mode"
 }
 }
 elsif($TmpModeString =~ /b/) {
 if($TmpModeString =~ /l/) {
 $AnchorMode = 5; # "mixed-transit mode"
 }
 else {
 $AnchorMode = 3; # "bus-only mode"
 }
 }
 elsif($TmpModeString =~ /l/) {
 $AnchorMode = 4; # "rail-only mode"
 }
 elsif($TmpModeString =~ /w/) {
 $AnchorMode = 1; # "walk-only mode"
 }

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 100

 elsif($TmpModeString =~ /k/) {
 $AnchorMode = 0; # "magic-only mode (includes k,K,i)"
 }
 }

 #determine tour mode preference (activity modes)
 $TmpModeString = $ActMode;
 # test for illegal modes
 if($TmpModeString =~ /NA/) {
 $TourModePref = -1; # "bad mode"
 }
 else {
 # then get rid of magic k & K:
 $TmpModeString =~ s/8/0/g;
 $TmpModeString =~ s/9/0/g;
 # ignore bike for now:
 $TmpModeString =~ s/7/0/g;
 # determine mode for tour
 if($TmpModeString =~ /2/) {
 if($TmpModeString =~ /6/ || $TmpModeString =~ /5/
 || $TmpModeString =~ /4/ || $TmpModeString =~ /3/) {
 $TourModePref = 6; # "possible P&R mode"
 }
 else {
 $TourModePref = 2; # "car-only mode"
 }
 }
 elsif($TmpModeString =~ /3/) {
 if($TmpModeString =~ /4/) {
 $TourModePref = 5; # "mixed-transit mode"
 }
 else {
 $TourModePref = 3; # "bus-only mode"
 }
 }
 elsif($TmpModeString =~ /4/) {
 $TourModePref = 4; # "rail-only mode"
 }
 elsif($TmpModeString =~ /1/) {
 $TourModePref = 1; # "walk-only mode"
 }
 elsif($TmpModeString =~ /0/) {
 $TourModePref = 0; # "magic-only mode (includes k,K,i)"
 }
 }

 # print info from last tour
 print TOURITDB $HH,"\t",$Trav,"\t",$Income,"\t",$Age,"\t";
 print TOURITDB
$Tour,"\t",$TourAct,"\t",$TourType,"\t",$TourMode,"\t",$TourModePref,"\t";
 if($GoodTour == 1 && $LastLoc == $HomeLoc) { # only OK if they had times
& got back home
 print TOURITDB $Time;
 }
 else {
 print TOURITDB "NA";
 }
 print TOURITDB
"\t",$Dist,"\t",$MultiMode,"\t",$Shared,"\t",$Nsubtours,"\t";
 print TOURITDB
$River1,"\t",$River2,"\t",$RailOnly,"\t",$MaxTranDist,"\t",$ModeString,"\t";
 print TOURITDB
$HomeZone,"\t",$HomeRiver,"\t",$HomeUrban,"\t",$HomeTranDist,"\t";
 print TOURITDB
$AnchorAct,"\t",$AnchorZone,"\t",$AnchorRiver,"\t",$AnchorUrban,"\t";
 print TOURITDB
$AnchorParking,"\t",$AnchorTranDist,"\t",$AnchorModePref,"\t",$AnchorMode,"\t";
 print TOURITDB $AnchorType,"\t",$DickTime2,"\t",$DickTime3,"\n";
 }
 $NotFirstTrav = 1;

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 101

 # Traveler data
 $HH = $data[$HHField];
 $Trav = $data[$TravField];
 $Income = $data[$IncomeField];
 $Age = $data[$AgeField];
 # Tour data
 $Tour = $data[$TourField];
 $TourAct = $data[$Act2Field];
 $GoodTour = ($data[$TimeField] ne "NA") ? 1 : 0;
 if($GoodTour == 1) { $Time = $data[$TimeField]; }
 $Dist = $data[$DistField];
 $ModeString = $data[$ModeStringField];
 $ActMode = $data[$ModeField];
 if($data[$SharField] != 0) {
 if($data[$DriverField] == $Trav) { $Shared = 4; } # main-tour shared-ride driver
 else {$Shared = 2;} # main-tour shared-ride passenger
 }
 else {$Shared = 0;}
 $CurrentMode = $data[$ModeField];
 $MultiMode = 0;
 $AnchorDuration = 0;
 $Nsubtours = 0;
 if($data[$ModeField] == 2 && $data[$River1Field] != $data[$River2Field]) {
 if($data[$River1Field] == 1 || $data[$River2Field] == 1) { $River1 = 1;
$River2 = 0; }
 else { $River1 = 0; $River2 = 1; }
 }
 else { $River1 = 0; $River2 = 0; }
 if($data[$ModeField] == 4) { $RailOnly = 1; }
 else { $RailOnly = 0; }
 $MaxTranDist = ($data[$Tran1Field] > $data[$Tran2Field]) ? $data[$Tran1Field]
: $data[$Tran2Field];
 # Home data
 $HomeLoc = $data[$ActLoc1Field];
 $HomeZone = $data[$Zone1Field];
 $HomeRiver = $data[$River1Field];
 $HomeUrban = $data[$Urban1Field];
 $HomeTranDist = $data[$Tran1Field];
 # Anchor data
 $AnchorAct = $data[$Act2Field];
 $AnchorZone = $data[$Zone2Field];
 $AnchorRiver = $data[$River2Field];
 $AnchorUrban = $data[$Urban2Field];
 $AnchorParking = $data[$ParkingField];
 $AnchorTranDist = $data[$Tran2Field];
 $AnchorDuration = ($data[$DurLBField] + $data[$DurUBField])/2;
 $AnchorModePref = $CurrentMode;
 $AnchorMode = $ModeString;
 $AnchorType = $data[$TypeField];
 $DickTime2 = $Time;
 $DickTime3 = $data[$TimeField];
 # work-school-or-college anchor:
 if($data[$TypeField] == 1 || $data[$TypeField] == 7 || $data[$TypeField] == 8) {
 $TourType = "work";
 }
 elsif($data[$TypeField] == 2) { # shop anchor
 $TourType = "shop";
 }
 else { # "other" type anchor, default
 $TourType = "other";
 } # note precedence of w, s, then o anchor locations
 } # new tour
 } # skip "activity" entries
}

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 102

first determine tour-mode

$TmpModeString = $ModeString;
test for illegal modes
if($TmpModeString =~ /U/ || $TmpModeString =~ /NA/ || $TmpModeString =~ /p/ ||
$TmpModeString =~ /t/) {
 $TourMode = -1; # "bad mode"
}
else {
 # then get rid of magic k & K:
 $TmpModeString =~ s/K/k/g;
 # ignore bike for now:
 $TmpModeString =~ s/i/k/g;
 # determine mode for tour
 if($TmpModeString =~ /c/) {
 if($TmpModeString =~ /l/ || $TmpModeString =~ /b/) {
 $TourMode = 6; # "possible P&R mode"
 }
 else {
 $TourMode = 2; # "car-only mode"
 }
 }
 elsif($TmpModeString =~ /b/) {
 if($TmpModeString =~ /l/) {
 $TourMode = 5; # "mixed-transit mode"
 }
 else {
 $TourMode = 3; # "bus-only mode"
 }
 }
 elsif($TmpModeString =~ /l/) {
 $TourMode = 4; # "rail-only mode"
 }
 elsif($TmpModeString =~ /w/) {
 $TourMode = 1; # "walk-only mode"
 }
 elsif($TmpModeString =~ /k/) {
 $TourMode = 0; # "magic-only mode (includes k,K,i)"
 }
}

determine primary anchor mode
$TmpModeString = $AnchorMode;
test for illegal modes
if($TmpModeString =~ /U/ || $TmpModeString =~ /NA/ || $TmpModeString =~ /p/ ||
$TmpModeString =~ /t/) {
 $AnchorMode = -1; # "bad mode"
}
else {
 # then get rid of magic k & K:
 $TmpModeString =~ s/K/k/g;
 # ignore bike for now:
 $TmpModeString =~ s/i/k/g;
 # determine mode for tour
 if($TmpModeString =~ /c/) {
 if($TmpModeString =~ /l/ || $TmpModeString =~ /b/) {
 $AnchorMode = 6; # "possible P&R mode"
 }
 else {
 $AnchorMode = 2; # "car-only mode"
 }
 }
 elsif($TmpModeString =~ /b/) {
 if($TmpModeString =~ /l/) {
 $AnchorMode = 5; # "mixed-transit mode"
 }
 else {
 $AnchorMode = 3; # "bus-only mode"
 }
 }

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 103

 elsif($TmpModeString =~ /l/) {
 $AnchorMode = 4; # "rail-only mode"
 }
 elsif($TmpModeString =~ /w/) {
 $AnchorMode = 1; # "walk-only mode"
 }
 elsif($TmpModeString =~ /k/) {
 $AnchorMode = 0; # "magic-only mode (includes k,K,i)"
 }
}

#determine tour mode preference (activity modes)
$TmpModeString = $ActMode;
test for illegal modes
if($TmpModeString =~ /NA/) {
 $TourModePref = -1; # "bad mode"
}
else {
 # then get rid of magic k & K:
 $TmpModeString =~ s/8/0/g;
 $TmpModeString =~ s/9/0/g;
 # ignore bike for now:
 $TmpModeString =~ s/7/0/g;
 # determine mode for tour
 if($TmpModeString =~ /2/) {
 if($TmpModeString =~ /6/ || $TmpModeString =~ /5/
 || $TmpModeString =~ /4/ || $TmpModeString =~ /3/) {
 $TourModePref = 6; # "possible P&R mode"
 }
 else {
 $TourModePref = 2; # "car-only mode"
 }
 }
 elsif($TmpModeString =~ /3/) {
 if($TmpModeString =~ /4/) {
 $TourModePref = 5; # "mixed-transit mode"
 }
 else {
 $TourModePref = 3; # "bus-only mode"
 }
 }
 elsif($TmpModeString =~ /4/) {
 $TourModePref = 4; # "rail-only mode"
 }
 elsif($TmpModeString =~ /1/) {
 $TourModePref = 1; # "walk-only mode"
 }
 elsif($TmpModeString =~ /0/) {
 $TourModePref = 0; # "magic-only mode (includes k,K,i)"
 }
}

print info from last tour
print TOURITDB $HH,"\t",$Trav,"\t",$Income,"\t",$Age,"\t";
print TOURITDB $Tour,"\t",$TourAct,"\t",$TourType,"\t",$TourMode,"\t",$TourModePref,"\t";
if($GoodTour == 1 && $LastLoc == $HomeLoc) { # only OK if they had times & got back home
 print TOURITDB $Time;
}
else {
 print TOURITDB "NA";
}
print TOURITDB "\t",$Dist,"\t",$MultiMode,"\t",$Shared,"\t",$Nsubtours,"\t";
print TOURITDB
$River1,"\t",$River2,"\t",$RailOnly,"\t",$MaxTranDist,"\t",$ModeString,"\t";
print TOURITDB $HomeZone,"\t",$HomeRiver,"\t",$HomeUrban,"\t",$HomeTranDist,"\t";
print TOURITDB $AnchorAct,"\t",$AnchorZone,"\t",$AnchorRiver,"\t",$AnchorUrban,"\t";
print TOURITDB
$AnchorParking,"\t",$AnchorTranDist,"\t",$AnchorModePref,"\t",$AnchorMode,"\t";
print TOURITDB $AnchorType,"\t",$DickTime2,"\t",$DickTime3,"\n";

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 104

close ORIGITDB;
close TOURITDB;

exit

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 105

6.2.8 ReModeTrans.pl

#! /usr/bin/perl -w

NOTE: This takes a TOUR-based itdb as input

This script creates feedback commands that will convert ALL rail or
walk trips in the tours in a tour database into regular transit
trips.

- create activity feedback file with re-mode commands
- create a router household file for router feedback

$delim = "\t";
$heads = 1;

get command line arguments:
if($#ARGV+1 != 3) {
 print "\nusage: ReModeTrans.pl TOURITDB ROUTEFB ACTIVFB\n\n";
 print " TOURITDB = input tour-based, tab delimited iteration database\n";
 print " ROUTEFB = household file changing w,l-trips into t-trips\n";
 print " ACTIVFB = activity regenerator feedback command file\n\n";
 exit;
}
local($origitdb, $routefile, $activfile) = @ARGV;

open input itdb and parse header
open(ORIGITDB, "$origitdb") || die "Failed to open $origitdb.";
read header lines
for($i=0;$i<$heads;$i++) {
 $line = <ORIGITDB>;
}

find fields automatically using header
chomp $line;
@data = split($delim, $line);
$i=0;
$HHField = $ActField = -1;
while($data[$i]) {
 if($data[$i] eq "HH") {
 $HHField = $i;
 }
 elsif($data[$i] eq "AnchorAct") {
 $ActField = $i;
 }
 $i++;
}
check for mandatory fields
$Missing = 0;
if($HHField == -1) {
 print "Missing HH.\n";
 $Missing++;
}
if($ActField == -1) {
 print "Missing AnchorAct.\n";
 $Missing++;
}
if($Missing > 0) {exit;}

open output files
open(ROUTEFB, ">$routefile") || die "Failed to open $routefile.";
open(ACTIVFB, ">$activfile") || die "Failed to open $activfile.";

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 106

###########################

$HH2 = -999;

loop over lines
while (<ORIGITDB>) {
 $line = $_; chomp $line;
 @data = split($delim, $line);

 $HH = $data[$HHField];

 # send mode-change feedback command to activity feedback file
 print ACTIVFB $HH," ",$data[$ActField]," M 3 1 2 4\n";
 # send HH to router feedback file if not already sent
 if($HH2 != $HH) {
 $HH2 = $HH;
 print ROUTEFB $HH,"\n";
 }
}

###########################

close ORIGITDB;
close ROUTEFB;
close ACTIVFB;

###########################
exit

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 107

6.2.9 Select-Random.pl

#! /usr/bin/perl -w

get command line arguments
local($seed, $alpha, $infile, $outfile, $outfile2) = @ARGV;

set random number seed
srand($seed);

open input and output files
open(REPLANNED, "$infile") || print "Failed to open $infile.";
open(SELECTED, ">$outfile") || print "Failed to open $outfile.";
open(SELECTED2, ">$outfile2") || print "Failed to open $outfile2.";

output any line for which the random number is less than $alpha
while (<REPLANNED>) {
 $random = rand();
 #print STDOUT $random, "\n";
 if ($random < $alpha) {
 print SELECTED;
 }
 else{
 print SELECTED2;
 }
}

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 108

6.2.10 Match_Pop.pl

#!/usr/bin/perl

$info = 2;

open(FILE1,$ARGV[0]) or die "Can't open file: $ARGV[0].\n";
while(<FILE1>) {
 # read one line into scalars
 $line = $_; chop $line;
 @data = split("\t", $line);
 # save in a hash
 $Rec0{$data[0]} = 1;
 $Rec1{$data[1]} = 1;
}
close FILE1;

open(FILE2, $ARGV[1]) or die "Can't open file $ARGV[1].\n";
open(FILE3, ">$ARGV[2]") or die "Can't open file $ARGV[2].\n";
for($i=0;$i<$info;$i++) {$line = <FILE2>;print FILE3 $line;}

while(<FILE2>) {
 $line = $_; chop $line;
 @data = split(" ", $line);

 if($data[2] eq "H" && $Rec0{$data[3]}) {
 $data[4] = 1;
 print FILE3 join(" ",@data),"\n";
 }
 elsif($data[1] eq "P" && $Rec1{$data[2]}) {
 print FILE3 $line,"\n";
 }
}

close FILE2;
close FILE3;

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 109

6.2.11 Match_Acts.pl

#!/usr/bin/perl
Solaris: /sw/Cvol/bin/perl

NOTE: indexing starts at ZERO in perl!

File1 is the household file, File2 is the input activity file, File3
is the output activity file with matches in the HH file, and File 4
is the output activity file for households not in the HH file.

$delim = "\t";
#$delim = " ";
$info = 0;

open(FILE1,$ARGV[0]) or die "Can't open file: $ARGV[0].\n";
while(<FILE1>) {
 # read one line into scalars
 $line = $_; chop $line;
 @data = split($delim, $line);
 # save in a hash
 $Rec1{$data[1]} = 1;
 $Rec4{$data[1]} = $data[4];
}
close FILE1;

open(FILE2, $ARGV[1]) or die "Can't open file $ARGV[1].\n";
open(FILE3, ">$ARGV[2]") or die "Can't open file $ARGV[2].\n";
for($i=0;$i<$info;$i++) {$line = <FILE2>;if($i==$info-1){print FILE3 $line;}}

$LastTrav = -1;

while(<FILE2>) {
 $line = $_; chop $line;
 @data = split($delim, $line);

 if($Rec1{$data[1]}) {
 $Trav = $data[1];

 if($LastTrav != $Trav) {
 $Home = $data[20];
 $TourNum = 1;
 }
 elsif($Home == $data[20]) {
 if($LastLoc != $Home) { # account for Stephen's Collator
 $TourNum++;
 }
 }

 if($TourNum == $Rec4{$data[1]}
 || ($TourNum-1 == $Rec4{$data[1]} && $Home == $data[20])) {
 print FILE3 $line,"\n";
 }

 $LastTrav = $Trav;
 $LastLoc = $data[20];
 }
}

close FILE2;
close FILE3;

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 110

6.2.12 Stratify.pl

#! /usr/bin/perl -w

This script takes any tour-based database and creates the 18
separate files corresponding to the 18 strata decided upon by METRO:
1) work / non-work
2) home urbanization: (very urban, urban, sub-urban) = (1,2,3)
3) primary anchor urbanization: very urban, urban, sub-urban

If no 2nd argument is given, then no output is made to files, but
the counts-by-bin are sent to standard output.

NOTE: This script will work independent of optional fields.

$heads = 1;
$delim = "\t";
$Output = 0;

get command line arguments:
if($#ARGV+1 == 1) {
 local($origitdb) = @ARGV;
}
elsif($#ARGV+1 == 2) {
 local($origitdb, $outitdb) = @ARGV;
 $Output = 1;
}
else {
 print "\nusage: StratifyDB.pl TOURITDB [NEWDBPREFIX]\n\n";
 print " TOURITDB = input tour-based, tab delimited iteration database\n";
 print " NEWDBPREFIX = output as TOURITDB, but only selected tours\n";
 print " in each of 18 files - one for each stratum.\n\n";
 exit;
}

local($origitdb, $outitdb) = @ARGV;

 $Urban2Field = $i;

open input itdb and parse header
open(ORIGITDB, "$origitdb") || die "Failed to open $origitdb.";
read header lines
for($i=0;$i<$heads;$i++) {
 $line = <ORIGITDB>;
}

find fields automatically using header
chomp $line;
@data = split($delim, $line);
$i=0;
$TypeField = $Urban1Field = $Urban2Field = -1;
while($data[$i]) {
 if($data[$i] eq "Type") {
 $TypeField = $i;
 }
 elsif($data[$i] eq "HomeUrban") {
 $Urban1Field = $i;
 }
 elsif($data[$i] eq "AnchorUrban") {

 }
 $i++;
}
check for mandatory fields
$Missing = 0;
if($TypeField == -1) {

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 111

 print "Missing Type.\n";
 $Missing++;
}
if($Urban1Field == -1) {
 print "Missing HomeUrban.\n";
 $Missing++;
}
if($Urban2Field == -1) {
 print "Missing AnchorUrban.\n";
 $Missing++;
}
if($Missing > 0) {exit;}

if($Output == 1) { # stratify DB into files

 # open output files - brute force for now
 open(NEWITDBw11, ">$outitdb.w.1.1") || die "Failed to open $outitdb.w.1.1.";
 open(NEWITDBw12, ">$outitdb.w.1.2") || die "Failed to open $outitdb.w.1.2.";
 open(NEWITDBw13, ">$outitdb.w.1.3") || die "Failed to open $outitdb.w.1.3.";
 open(NEWITDBw21, ">$outitdb.w.2.1") || die "Failed to open $outitdb.w.2.1.";
 open(NEWITDBw22, ">$outitdb.w.2.2") || die "Failed to open $outitdb.w.2.2.";
 open(NEWITDBw23, ">$outitdb.w.2.3") || die "Failed to open $outitdb.w.2.3.";
 open(NEWITDBw31, ">$outitdb.w.3.1") || die "Failed to open $outitdb.w.3.1.";
 open(NEWITDBw32, ">$outitdb.w.3.2") || die "Failed to open $outitdb.w.3.2.";
 open(NEWITDBw33, ">$outitdb.w.3.3") || die "Failed to open $outitdb.w.3.3.";
 open(NEWITDBn11, ">$outitdb.n.1.1") || die "Failed to open $outitdb.n.1.1.";
 open(NEWITDBn12, ">$outitdb.n.1.2") || die "Failed to open $outitdb.n.1.2.";
 open(NEWITDBn13, ">$outitdb.n.1.3") || die "Failed to open $outitdb.n.1.3.";
 open(NEWITDBn21, ">$outitdb.n.2.1") || die "Failed to open $outitdb.n.2.1.";
 open(NEWITDBn22, ">$outitdb.n.2.2") || die "Failed to open $outitdb.n.2.2.";
 open(NEWITDBn23, ">$outitdb.n.2.3") || die "Failed to open $outitdb.n.2.3.";
 open(NEWITDBn31, ">$outitdb.n.3.1") || die "Failed to open $outitdb.n.3.1.";
 open(NEWITDBn32, ">$outitdb.n.3.2") || die "Failed to open $outitdb.n.3.2.";
 open(NEWITDBn33, ">$outitdb.n.3.3") || die "Failed to open $outitdb.n.3.3.";

 # print itdb header
 print NEWITDBw11 $line,"\n";
 print NEWITDBw12 $line,"\n";
 print NEWITDBw13 $line,"\n";
 print NEWITDBw21 $line,"\n";
 print NEWITDBw22 $line,"\n";
 print NEWITDBw23 $line,"\n";
 print NEWITDBw31 $line,"\n";
 print NEWITDBw32 $line,"\n";
 print NEWITDBw33 $line,"\n";
 print NEWITDBn11 $line,"\n";
 print NEWITDBn12 $line,"\n";
 print NEWITDBn13 $line,"\n";
 print NEWITDBn21 $line,"\n";
 print NEWITDBn22 $line,"\n";
 print NEWITDBn23 $line,"\n";
 print NEWITDBn31 $line,"\n";
 print NEWITDBn32 $line,"\n";
 print NEWITDBn33 $line,"\n";

 # loop over lines
 while (<ORIGITDB>) {
 $line = $_; chomp $line;
 @data = split($delim, $line);

 # send to appropriate file
 if($data[$TypeField] eq "work") {
 if($data[$Urban1Field] == 1) {
 if($data[$Urban2Field] == 1) {
 print NEWITDBw11 $line,"\n";
 }

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 112

 elsif($data[$Urban2Field] == 2) {
 print NEWITDBw12 $line,"\n";
 }
 else {
 print NEWITDBw13 $line,"\n";
 }
 }
 elsif($data[$Urban1Field] == 2) {
 if($data[$Urban2Field] == 1) {
 print NEWITDBw21 $line,"\n";
 }
 elsif($data[$Urban2Field] == 2) {
 print NEWITDBw22 $line,"\n";
 }
 else {
 print NEWITDBw23 $line,"\n";
 }
 }
 else { # home urban = 3
 if($data[$Urban2Field] == 1) {
 print NEWITDBw31 $line,"\n";
 }
 elsif($data[$Urban2Field] == 2) {

 print NEWITDBn11 $line,"\n";

 print NEWITDBn21 $line,"\n";

 print NEWITDBw32 $line,"\n";
 }
 else {
 print NEWITDBw33 $line,"\n";
 }
 }
 }
 else { # non-work
 if($data[$Urban1Field] == 1) {
 if($data[$Urban2Field] == 1) {

 }
 elsif($data[$Urban2Field] == 2) {
 print NEWITDBn12 $line,"\n";
 }
 else { # work urban = 3
 print NEWITDBn13 $line,"\n";
 }
 }
 elsif($data[$Urban1Field] == 2) {
 if($data[$Urban2Field] == 1) {

 }
 elsif($data[$Urban2Field] == 2) {
 print NEWITDBn22 $line,"\n";
 }
 else {
 print NEWITDBn23 $line,"\n";
 }
 }
 else { # home urban = 3
 if($data[$Urban2Field] == 1) {
 print NEWITDBn31 $line,"\n";
 }
 elsif($data[$Urban2Field] == 2) {
 print NEWITDBn32 $line,"\n";
 }
 else { # work urban = 3
 print NEWITDBn33 $line,"\n";
 }
 }
 }
 }

 close NEWITDBw11;
 close NEWITDBw12;
 close NEWITDBw13;
 close NEWITDBw21;

Chapter Five—Mode Calibration … Portland Study Reports

Volume Three—Feedback Loops 10 December 2002 113

 close NEWITDBw22;
 close NEWITDBw23;
 close NEWITDBw31;
 close NEWITDBw32;
 close NEWITDBw33;
 close NEWITDBn11;
 close NEWITDBn12;
 close NEWITDBn13;
 close NEWITDBn21;
 close NEWITDBn22;
 close NEWITDBn23;
 close NEWITDBn31;
 close NEWITDBn32;
 close NEWITDBn33;
}

if($Output == 0) { # no output files

 # loop over lines
 while (<ORIGITDB>) {
 $line = $_; chomp $line;
 @data = split($delim, $line);

 # count by strata
 if($data[$TypeField] eq "work") { $work = "w"; }
 else { $work = "n"; }
 $Counts{$work}{$data[$Urban1Field]}{$data[$Urban2Field]}++;
 }

 # print results
 print "Work/N\tHomUrb\tAnchUrb\tCount\n";
 foreach $key1 (sort keys %Counts) {
 foreach $key2 (sort keys %{ $Counts{$key1} }) {
 foreach $key3 (sort keys %{ $Counts{$key1}{$key2} }) {
 print $key1,"\t",$key2,"\t",$key3,"\t",$Counts{$key1}{$key2}{$key3},"\n";
 }
 }
 }
}

close ORIGITDB;

exit;

Chapter Five—Mode Calibration … Portland Study Reports

	Introduction
	Case Study Mode Choice
	Case Study Model & Definitions
	Model: Cost Function and Stratification
	Cost Function
	Stratification

	Calibration of this Model
	Travel Time Definition
	Monetary Cost Details
	Urbanization Value
	“Near Transit”
	Other Notes

	Results of Calibration and Application
	Initialization and Calibration
	Cost Function and Target Values
	Activity File Preparation
	Obtaining a Cost Database and the Route Planner Proportions

	Application
	Preapplication Sampling
	Mode Assignment Using Generalized Transit and Auto Costs
	Mode Assignment Using Generalized Transit Costs Only
	Mode Assignment Using Auto Costs Only
	Comparison of the Results

	Some Topics Of Interest
	Cost Functions That Can Not Be Calibrated
	Nonuniqueness of the Cost Function
	Sample Sizes, Biases and Variability
	Boarding Times for Transit

	Summary
	Appendix A: General Scripts for Mode Calibration
	Calibration Methods
	Initialization
	Select Tour Types
	Compute Targets
	Route Samples

	Calibration
	Estimate Route Planner Probabilities
	Compute Model Parameter

	Application to Forecast Year
	Initial Application
	Route on Transit
	Route Sample on Auto
	Compute New Modes
	Route Chosen Modes

	Iteration
	Initial Evaluation & Correction
	Continued Correction

	Appendix B: Scripts and Configuration Files
	Configuration Files
	ReModeAuto-A.cfg
	ReModeTrans-A.cfg
	RemoveSubtours-A.cfg
	final2-A.cfg
	final1-R.cfg
	final0-R.cfg
	test-C.cfg
	transit-C.cfg
	final2-C.cfg
	final0-C.cfg
	final1-A.cfg
	auto-R.cfg
	auto-C.cfg
	RemoveSubtours-C.cfg
	final2-R.cfg
	final1-C.cfg
	final0-A.cfg
	test-R.cfg
	transit-R.cfg

	Scripts
	run.csh
	FixActs.pl
	FilterONDN.pl
	FilterOther.pl
	AddParkingCost.pl
	CombineDat.pl
	ItdbByTour.pl
	ReModeTrans.pl
	Select-Random.pl
	Match_Pop.pl
	Match_Acts.pl
	Stratify.pl

